Spaces:
Sleeping
Sleeping
""" | |
Octave (and Matlab) code printer | |
The `OctaveCodePrinter` converts SymPy expressions into Octave expressions. | |
It uses a subset of the Octave language for Matlab compatibility. | |
A complete code generator, which uses `octave_code` extensively, can be found | |
in `sympy.utilities.codegen`. The `codegen` module can be used to generate | |
complete source code files. | |
""" | |
from __future__ import annotations | |
from typing import Any | |
from sympy.core import Mul, Pow, S, Rational | |
from sympy.core.mul import _keep_coeff | |
from sympy.core.numbers import equal_valued | |
from sympy.printing.codeprinter import CodePrinter | |
from sympy.printing.precedence import precedence, PRECEDENCE | |
from re import search | |
# List of known functions. First, those that have the same name in | |
# SymPy and Octave. This is almost certainly incomplete! | |
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", | |
"asin", "acos", "acot", "atan", "atan2", "asec", "acsc", | |
"sinh", "cosh", "tanh", "coth", "csch", "sech", | |
"asinh", "acosh", "atanh", "acoth", "asech", "acsch", | |
"erfc", "erfi", "erf", "erfinv", "erfcinv", | |
"besseli", "besselj", "besselk", "bessely", | |
"bernoulli", "beta", "euler", "exp", "factorial", "floor", | |
"fresnelc", "fresnels", "gamma", "harmonic", "log", | |
"polylog", "sign", "zeta", "legendre"] | |
# These functions have different names ("SymPy": "Octave"), more | |
# generally a mapping to (argument_conditions, octave_function). | |
known_fcns_src2 = { | |
"Abs": "abs", | |
"arg": "angle", # arg/angle ok in Octave but only angle in Matlab | |
"binomial": "bincoeff", | |
"ceiling": "ceil", | |
"chebyshevu": "chebyshevU", | |
"chebyshevt": "chebyshevT", | |
"Chi": "coshint", | |
"Ci": "cosint", | |
"conjugate": "conj", | |
"DiracDelta": "dirac", | |
"Heaviside": "heaviside", | |
"im": "imag", | |
"laguerre": "laguerreL", | |
"LambertW": "lambertw", | |
"li": "logint", | |
"loggamma": "gammaln", | |
"Max": "max", | |
"Min": "min", | |
"Mod": "mod", | |
"polygamma": "psi", | |
"re": "real", | |
"RisingFactorial": "pochhammer", | |
"Shi": "sinhint", | |
"Si": "sinint", | |
} | |
class OctaveCodePrinter(CodePrinter): | |
""" | |
A printer to convert expressions to strings of Octave/Matlab code. | |
""" | |
printmethod = "_octave" | |
language = "Octave" | |
_operators = { | |
'and': '&', | |
'or': '|', | |
'not': '~', | |
} | |
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ | |
'precision': 17, | |
'user_functions': {}, | |
'contract': True, | |
'inline': True, | |
}) | |
# Note: contract is for expressing tensors as loops (if True), or just | |
# assignment (if False). FIXME: this should be looked a more carefully | |
# for Octave. | |
def __init__(self, settings={}): | |
super().__init__(settings) | |
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) | |
self.known_functions.update(dict(known_fcns_src2)) | |
userfuncs = settings.get('user_functions', {}) | |
self.known_functions.update(userfuncs) | |
def _rate_index_position(self, p): | |
return p*5 | |
def _get_statement(self, codestring): | |
return "%s;" % codestring | |
def _get_comment(self, text): | |
return "% {}".format(text) | |
def _declare_number_const(self, name, value): | |
return "{} = {};".format(name, value) | |
def _format_code(self, lines): | |
return self.indent_code(lines) | |
def _traverse_matrix_indices(self, mat): | |
# Octave uses Fortran order (column-major) | |
rows, cols = mat.shape | |
return ((i, j) for j in range(cols) for i in range(rows)) | |
def _get_loop_opening_ending(self, indices): | |
open_lines = [] | |
close_lines = [] | |
for i in indices: | |
# Octave arrays start at 1 and end at dimension | |
var, start, stop = map(self._print, | |
[i.label, i.lower + 1, i.upper + 1]) | |
open_lines.append("for %s = %s:%s" % (var, start, stop)) | |
close_lines.append("end") | |
return open_lines, close_lines | |
def _print_Mul(self, expr): | |
# print complex numbers nicely in Octave | |
if (expr.is_number and expr.is_imaginary and | |
(S.ImaginaryUnit*expr).is_Integer): | |
return "%si" % self._print(-S.ImaginaryUnit*expr) | |
# cribbed from str.py | |
prec = precedence(expr) | |
c, e = expr.as_coeff_Mul() | |
if c < 0: | |
expr = _keep_coeff(-c, e) | |
sign = "-" | |
else: | |
sign = "" | |
a = [] # items in the numerator | |
b = [] # items that are in the denominator (if any) | |
pow_paren = [] # Will collect all pow with more than one base element and exp = -1 | |
if self.order not in ('old', 'none'): | |
args = expr.as_ordered_factors() | |
else: | |
# use make_args in case expr was something like -x -> x | |
args = Mul.make_args(expr) | |
# Gather args for numerator/denominator | |
for item in args: | |
if (item.is_commutative and item.is_Pow and item.exp.is_Rational | |
and item.exp.is_negative): | |
if item.exp != -1: | |
b.append(Pow(item.base, -item.exp, evaluate=False)) | |
else: | |
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 | |
pow_paren.append(item) | |
b.append(Pow(item.base, -item.exp)) | |
elif item.is_Rational and item is not S.Infinity: | |
if item.p != 1: | |
a.append(Rational(item.p)) | |
if item.q != 1: | |
b.append(Rational(item.q)) | |
else: | |
a.append(item) | |
a = a or [S.One] | |
a_str = [self.parenthesize(x, prec) for x in a] | |
b_str = [self.parenthesize(x, prec) for x in b] | |
# To parenthesize Pow with exp = -1 and having more than one Symbol | |
for item in pow_paren: | |
if item.base in b: | |
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] | |
# from here it differs from str.py to deal with "*" and ".*" | |
def multjoin(a, a_str): | |
# here we probably are assuming the constants will come first | |
r = a_str[0] | |
for i in range(1, len(a)): | |
mulsym = '*' if a[i-1].is_number else '.*' | |
r = r + mulsym + a_str[i] | |
return r | |
if not b: | |
return sign + multjoin(a, a_str) | |
elif len(b) == 1: | |
divsym = '/' if b[0].is_number else './' | |
return sign + multjoin(a, a_str) + divsym + b_str[0] | |
else: | |
divsym = '/' if all(bi.is_number for bi in b) else './' | |
return (sign + multjoin(a, a_str) + | |
divsym + "(%s)" % multjoin(b, b_str)) | |
def _print_Relational(self, expr): | |
lhs_code = self._print(expr.lhs) | |
rhs_code = self._print(expr.rhs) | |
op = expr.rel_op | |
return "{} {} {}".format(lhs_code, op, rhs_code) | |
def _print_Pow(self, expr): | |
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^' | |
PREC = precedence(expr) | |
if equal_valued(expr.exp, 0.5): | |
return "sqrt(%s)" % self._print(expr.base) | |
if expr.is_commutative: | |
if equal_valued(expr.exp, -0.5): | |
sym = '/' if expr.base.is_number else './' | |
return "1" + sym + "sqrt(%s)" % self._print(expr.base) | |
if equal_valued(expr.exp, -1): | |
sym = '/' if expr.base.is_number else './' | |
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) | |
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, | |
self.parenthesize(expr.exp, PREC)) | |
def _print_MatPow(self, expr): | |
PREC = precedence(expr) | |
return '%s^%s' % (self.parenthesize(expr.base, PREC), | |
self.parenthesize(expr.exp, PREC)) | |
def _print_MatrixSolve(self, expr): | |
PREC = precedence(expr) | |
return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC), | |
self.parenthesize(expr.vector, PREC)) | |
def _print_Pi(self, expr): | |
return 'pi' | |
def _print_ImaginaryUnit(self, expr): | |
return "1i" | |
def _print_Exp1(self, expr): | |
return "exp(1)" | |
def _print_GoldenRatio(self, expr): | |
# FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)? | |
#return self._print((1+sqrt(S(5)))/2) | |
return "(1+sqrt(5))/2" | |
def _print_Assignment(self, expr): | |
from sympy.codegen.ast import Assignment | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.tensor.indexed import IndexedBase | |
# Copied from codeprinter, but remove special MatrixSymbol treatment | |
lhs = expr.lhs | |
rhs = expr.rhs | |
# We special case assignments that take multiple lines | |
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): | |
# Here we modify Piecewise so each expression is now | |
# an Assignment, and then continue on the print. | |
expressions = [] | |
conditions = [] | |
for (e, c) in rhs.args: | |
expressions.append(Assignment(lhs, e)) | |
conditions.append(c) | |
temp = Piecewise(*zip(expressions, conditions)) | |
return self._print(temp) | |
if self._settings["contract"] and (lhs.has(IndexedBase) or | |
rhs.has(IndexedBase)): | |
# Here we check if there is looping to be done, and if so | |
# print the required loops. | |
return self._doprint_loops(rhs, lhs) | |
else: | |
lhs_code = self._print(lhs) | |
rhs_code = self._print(rhs) | |
return self._get_statement("%s = %s" % (lhs_code, rhs_code)) | |
def _print_Infinity(self, expr): | |
return 'inf' | |
def _print_NegativeInfinity(self, expr): | |
return '-inf' | |
def _print_NaN(self, expr): | |
return 'NaN' | |
def _print_list(self, expr): | |
return '{' + ', '.join(self._print(a) for a in expr) + '}' | |
_print_tuple = _print_list | |
_print_Tuple = _print_list | |
_print_List = _print_list | |
def _print_BooleanTrue(self, expr): | |
return "true" | |
def _print_BooleanFalse(self, expr): | |
return "false" | |
def _print_bool(self, expr): | |
return str(expr).lower() | |
# Could generate quadrature code for definite Integrals? | |
#_print_Integral = _print_not_supported | |
def _print_MatrixBase(self, A): | |
# Handle zero dimensions: | |
if (A.rows, A.cols) == (0, 0): | |
return '[]' | |
elif S.Zero in A.shape: | |
return 'zeros(%s, %s)' % (A.rows, A.cols) | |
elif (A.rows, A.cols) == (1, 1): | |
# Octave does not distinguish between scalars and 1x1 matrices | |
return self._print(A[0, 0]) | |
return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]]) | |
for r in range(A.rows)) | |
def _print_SparseRepMatrix(self, A): | |
from sympy.matrices import Matrix | |
L = A.col_list(); | |
# make row vectors of the indices and entries | |
I = Matrix([[k[0] + 1 for k in L]]) | |
J = Matrix([[k[1] + 1 for k in L]]) | |
AIJ = Matrix([[k[2] for k in L]]) | |
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), | |
self._print(AIJ), A.rows, A.cols) | |
def _print_MatrixElement(self, expr): | |
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ | |
+ '(%s, %s)' % (expr.i + 1, expr.j + 1) | |
def _print_MatrixSlice(self, expr): | |
def strslice(x, lim): | |
l = x[0] + 1 | |
h = x[1] | |
step = x[2] | |
lstr = self._print(l) | |
hstr = 'end' if h == lim else self._print(h) | |
if step == 1: | |
if l == 1 and h == lim: | |
return ':' | |
if l == h: | |
return lstr | |
else: | |
return lstr + ':' + hstr | |
else: | |
return ':'.join((lstr, self._print(step), hstr)) | |
return (self._print(expr.parent) + '(' + | |
strslice(expr.rowslice, expr.parent.shape[0]) + ', ' + | |
strslice(expr.colslice, expr.parent.shape[1]) + ')') | |
def _print_Indexed(self, expr): | |
inds = [ self._print(i) for i in expr.indices ] | |
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) | |
def _print_Idx(self, expr): | |
return self._print(expr.label) | |
def _print_KroneckerDelta(self, expr): | |
prec = PRECEDENCE["Pow"] | |
return "double(%s == %s)" % tuple(self.parenthesize(x, prec) | |
for x in expr.args) | |
def _print_HadamardProduct(self, expr): | |
return '.*'.join([self.parenthesize(arg, precedence(expr)) | |
for arg in expr.args]) | |
def _print_HadamardPower(self, expr): | |
PREC = precedence(expr) | |
return '.**'.join([ | |
self.parenthesize(expr.base, PREC), | |
self.parenthesize(expr.exp, PREC) | |
]) | |
def _print_Identity(self, expr): | |
shape = expr.shape | |
if len(shape) == 2 and shape[0] == shape[1]: | |
shape = [shape[0]] | |
s = ", ".join(self._print(n) for n in shape) | |
return "eye(" + s + ")" | |
def _print_lowergamma(self, expr): | |
# Octave implements regularized incomplete gamma function | |
return "(gammainc({1}, {0}).*gamma({0}))".format( | |
self._print(expr.args[0]), self._print(expr.args[1])) | |
def _print_uppergamma(self, expr): | |
return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format( | |
self._print(expr.args[0]), self._print(expr.args[1])) | |
def _print_sinc(self, expr): | |
#Note: Divide by pi because Octave implements normalized sinc function. | |
return "sinc(%s)" % self._print(expr.args[0]/S.Pi) | |
def _print_hankel1(self, expr): | |
return "besselh(%s, 1, %s)" % (self._print(expr.order), | |
self._print(expr.argument)) | |
def _print_hankel2(self, expr): | |
return "besselh(%s, 2, %s)" % (self._print(expr.order), | |
self._print(expr.argument)) | |
# Note: as of 2015, Octave doesn't have spherical Bessel functions | |
def _print_jn(self, expr): | |
from sympy.functions import sqrt, besselj | |
x = expr.argument | |
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) | |
return self._print(expr2) | |
def _print_yn(self, expr): | |
from sympy.functions import sqrt, bessely | |
x = expr.argument | |
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) | |
return self._print(expr2) | |
def _print_airyai(self, expr): | |
return "airy(0, %s)" % self._print(expr.args[0]) | |
def _print_airyaiprime(self, expr): | |
return "airy(1, %s)" % self._print(expr.args[0]) | |
def _print_airybi(self, expr): | |
return "airy(2, %s)" % self._print(expr.args[0]) | |
def _print_airybiprime(self, expr): | |
return "airy(3, %s)" % self._print(expr.args[0]) | |
def _print_expint(self, expr): | |
mu, x = expr.args | |
if mu != 1: | |
return self._print_not_supported(expr) | |
return "expint(%s)" % self._print(x) | |
def _one_or_two_reversed_args(self, expr): | |
assert len(expr.args) <= 2 | |
return '{name}({args})'.format( | |
name=self.known_functions[expr.__class__.__name__], | |
args=", ".join([self._print(x) for x in reversed(expr.args)]) | |
) | |
_print_DiracDelta = _print_LambertW = _one_or_two_reversed_args | |
def _nested_binary_math_func(self, expr): | |
return '{name}({arg1}, {arg2})'.format( | |
name=self.known_functions[expr.__class__.__name__], | |
arg1=self._print(expr.args[0]), | |
arg2=self._print(expr.func(*expr.args[1:])) | |
) | |
_print_Max = _print_Min = _nested_binary_math_func | |
def _print_Piecewise(self, expr): | |
if expr.args[-1].cond != True: | |
# We need the last conditional to be a True, otherwise the resulting | |
# function may not return a result. | |
raise ValueError("All Piecewise expressions must contain an " | |
"(expr, True) statement to be used as a default " | |
"condition. Without one, the generated " | |
"expression may not evaluate to anything under " | |
"some condition.") | |
lines = [] | |
if self._settings["inline"]: | |
# Express each (cond, expr) pair in a nested Horner form: | |
# (condition) .* (expr) + (not cond) .* (<others>) | |
# Expressions that result in multiple statements won't work here. | |
ecpairs = ["({0}).*({1}) + (~({0})).*(".format | |
(self._print(c), self._print(e)) | |
for e, c in expr.args[:-1]] | |
elast = "%s" % self._print(expr.args[-1].expr) | |
pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs) | |
# Note: current need these outer brackets for 2*pw. Would be | |
# nicer to teach parenthesize() to do this for us when needed! | |
return "(" + pw + ")" | |
else: | |
for i, (e, c) in enumerate(expr.args): | |
if i == 0: | |
lines.append("if (%s)" % self._print(c)) | |
elif i == len(expr.args) - 1 and c == True: | |
lines.append("else") | |
else: | |
lines.append("elseif (%s)" % self._print(c)) | |
code0 = self._print(e) | |
lines.append(code0) | |
if i == len(expr.args) - 1: | |
lines.append("end") | |
return "\n".join(lines) | |
def _print_zeta(self, expr): | |
if len(expr.args) == 1: | |
return "zeta(%s)" % self._print(expr.args[0]) | |
else: | |
# Matlab two argument zeta is not equivalent to SymPy's | |
return self._print_not_supported(expr) | |
def indent_code(self, code): | |
"""Accepts a string of code or a list of code lines""" | |
# code mostly copied from ccode | |
if isinstance(code, str): | |
code_lines = self.indent_code(code.splitlines(True)) | |
return ''.join(code_lines) | |
tab = " " | |
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') | |
dec_regex = ('^end$', '^elseif ', '^else$') | |
# pre-strip left-space from the code | |
code = [ line.lstrip(' \t') for line in code ] | |
increase = [ int(any(search(re, line) for re in inc_regex)) | |
for line in code ] | |
decrease = [ int(any(search(re, line) for re in dec_regex)) | |
for line in code ] | |
pretty = [] | |
level = 0 | |
for n, line in enumerate(code): | |
if line in ('', '\n'): | |
pretty.append(line) | |
continue | |
level -= decrease[n] | |
pretty.append("%s%s" % (tab*level, line)) | |
level += increase[n] | |
return pretty | |
def octave_code(expr, assign_to=None, **settings): | |
r"""Converts `expr` to a string of Octave (or Matlab) code. | |
The string uses a subset of the Octave language for Matlab compatibility. | |
Parameters | |
========== | |
expr : Expr | |
A SymPy expression to be converted. | |
assign_to : optional | |
When given, the argument is used as the name of the variable to which | |
the expression is assigned. Can be a string, ``Symbol``, | |
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for | |
expressions that generate multi-line statements. | |
precision : integer, optional | |
The precision for numbers such as pi [default=16]. | |
user_functions : dict, optional | |
A dictionary where keys are ``FunctionClass`` instances and values are | |
their string representations. Alternatively, the dictionary value can | |
be a list of tuples i.e. [(argument_test, cfunction_string)]. See | |
below for examples. | |
human : bool, optional | |
If True, the result is a single string that may contain some constant | |
declarations for the number symbols. If False, the same information is | |
returned in a tuple of (symbols_to_declare, not_supported_functions, | |
code_text). [default=True]. | |
contract: bool, optional | |
If True, ``Indexed`` instances are assumed to obey tensor contraction | |
rules and the corresponding nested loops over indices are generated. | |
Setting contract=False will not generate loops, instead the user is | |
responsible to provide values for the indices in the code. | |
[default=True]. | |
inline: bool, optional | |
If True, we try to create single-statement code instead of multiple | |
statements. [default=True]. | |
Examples | |
======== | |
>>> from sympy import octave_code, symbols, sin, pi | |
>>> x = symbols('x') | |
>>> octave_code(sin(x).series(x).removeO()) | |
'x.^5/120 - x.^3/6 + x' | |
>>> from sympy import Rational, ceiling | |
>>> x, y, tau = symbols("x, y, tau") | |
>>> octave_code((2*tau)**Rational(7, 2)) | |
'8*sqrt(2)*tau.^(7/2)' | |
Note that element-wise (Hadamard) operations are used by default between | |
symbols. This is because its very common in Octave to write "vectorized" | |
code. It is harmless if the values are scalars. | |
>>> octave_code(sin(pi*x*y), assign_to="s") | |
's = sin(pi*x.*y);' | |
If you need a matrix product "*" or matrix power "^", you can specify the | |
symbol as a ``MatrixSymbol``. | |
>>> from sympy import Symbol, MatrixSymbol | |
>>> n = Symbol('n', integer=True, positive=True) | |
>>> A = MatrixSymbol('A', n, n) | |
>>> octave_code(3*pi*A**3) | |
'(3*pi)*A^3' | |
This class uses several rules to decide which symbol to use a product. | |
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". | |
A HadamardProduct can be used to specify componentwise multiplication ".*" | |
of two MatrixSymbols. There is currently there is no easy way to specify | |
scalar symbols, so sometimes the code might have some minor cosmetic | |
issues. For example, suppose x and y are scalars and A is a Matrix, then | |
while a human programmer might write "(x^2*y)*A^3", we generate: | |
>>> octave_code(x**2*y*A**3) | |
'(x.^2.*y)*A^3' | |
Matrices are supported using Octave inline notation. When using | |
``assign_to`` with matrices, the name can be specified either as a string | |
or as a ``MatrixSymbol``. The dimensions must align in the latter case. | |
>>> from sympy import Matrix, MatrixSymbol | |
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) | |
>>> octave_code(mat, assign_to='A') | |
'A = [x.^2 sin(x) ceil(x)];' | |
``Piecewise`` expressions are implemented with logical masking by default. | |
Alternatively, you can pass "inline=False" to use if-else conditionals. | |
Note that if the ``Piecewise`` lacks a default term, represented by | |
``(expr, True)`` then an error will be thrown. This is to prevent | |
generating an expression that may not evaluate to anything. | |
>>> from sympy import Piecewise | |
>>> pw = Piecewise((x + 1, x > 0), (x, True)) | |
>>> octave_code(pw, assign_to=tau) | |
'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));' | |
Note that any expression that can be generated normally can also exist | |
inside a Matrix: | |
>>> mat = Matrix([[x**2, pw, sin(x)]]) | |
>>> octave_code(mat, assign_to='A') | |
'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];' | |
Custom printing can be defined for certain types by passing a dictionary of | |
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the | |
dictionary value can be a list of tuples i.e., [(argument_test, | |
cfunction_string)]. This can be used to call a custom Octave function. | |
>>> from sympy import Function | |
>>> f = Function('f') | |
>>> g = Function('g') | |
>>> custom_functions = { | |
... "f": "existing_octave_fcn", | |
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), | |
... (lambda x: not x.is_Matrix, "my_fcn")] | |
... } | |
>>> mat = Matrix([[1, x]]) | |
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions) | |
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' | |
Support for loops is provided through ``Indexed`` types. With | |
``contract=True`` these expressions will be turned into loops, whereas | |
``contract=False`` will just print the assignment expression that should be | |
looped over: | |
>>> from sympy import Eq, IndexedBase, Idx | |
>>> len_y = 5 | |
>>> y = IndexedBase('y', shape=(len_y,)) | |
>>> t = IndexedBase('t', shape=(len_y,)) | |
>>> Dy = IndexedBase('Dy', shape=(len_y-1,)) | |
>>> i = Idx('i', len_y-1) | |
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) | |
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False) | |
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));' | |
""" | |
return OctaveCodePrinter(settings).doprint(expr, assign_to) | |
def print_octave_code(expr, **settings): | |
"""Prints the Octave (or Matlab) representation of the given expression. | |
See `octave_code` for the meaning of the optional arguments. | |
""" | |
print(octave_code(expr, **settings)) | |