Spaces:
Sleeping
Sleeping
File size: 25,543 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
"""
Octave (and Matlab) code printer
The `OctaveCodePrinter` converts SymPy expressions into Octave expressions.
It uses a subset of the Octave language for Matlab compatibility.
A complete code generator, which uses `octave_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
from __future__ import annotations
from typing import Any
from sympy.core import Mul, Pow, S, Rational
from sympy.core.mul import _keep_coeff
from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from re import search
# List of known functions. First, those that have the same name in
# SymPy and Octave. This is almost certainly incomplete!
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
"asin", "acos", "acot", "atan", "atan2", "asec", "acsc",
"sinh", "cosh", "tanh", "coth", "csch", "sech",
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
"erfc", "erfi", "erf", "erfinv", "erfcinv",
"besseli", "besselj", "besselk", "bessely",
"bernoulli", "beta", "euler", "exp", "factorial", "floor",
"fresnelc", "fresnels", "gamma", "harmonic", "log",
"polylog", "sign", "zeta", "legendre"]
# These functions have different names ("SymPy": "Octave"), more
# generally a mapping to (argument_conditions, octave_function).
known_fcns_src2 = {
"Abs": "abs",
"arg": "angle", # arg/angle ok in Octave but only angle in Matlab
"binomial": "bincoeff",
"ceiling": "ceil",
"chebyshevu": "chebyshevU",
"chebyshevt": "chebyshevT",
"Chi": "coshint",
"Ci": "cosint",
"conjugate": "conj",
"DiracDelta": "dirac",
"Heaviside": "heaviside",
"im": "imag",
"laguerre": "laguerreL",
"LambertW": "lambertw",
"li": "logint",
"loggamma": "gammaln",
"Max": "max",
"Min": "min",
"Mod": "mod",
"polygamma": "psi",
"re": "real",
"RisingFactorial": "pochhammer",
"Shi": "sinhint",
"Si": "sinint",
}
class OctaveCodePrinter(CodePrinter):
"""
A printer to convert expressions to strings of Octave/Matlab code.
"""
printmethod = "_octave"
language = "Octave"
_operators = {
'and': '&',
'or': '|',
'not': '~',
}
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{
'precision': 17,
'user_functions': {},
'contract': True,
'inline': True,
})
# Note: contract is for expressing tensors as loops (if True), or just
# assignment (if False). FIXME: this should be looked a more carefully
# for Octave.
def __init__(self, settings={}):
super().__init__(settings)
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
self.known_functions.update(dict(known_fcns_src2))
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "% {}".format(text)
def _declare_number_const(self, name, value):
return "{} = {};".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
# Octave uses Fortran order (column-major)
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# Octave arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("for %s = %s:%s" % (var, start, stop))
close_lines.append("end")
return open_lines, close_lines
def _print_Mul(self, expr):
# print complex numbers nicely in Octave
if (expr.is_number and expr.is_imaginary and
(S.ImaginaryUnit*expr).is_Integer):
return "%si" % self._print(-S.ImaginaryUnit*expr)
# cribbed from str.py
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
and item.exp.is_negative):
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
# from here it differs from str.py to deal with "*" and ".*"
def multjoin(a, a_str):
# here we probably are assuming the constants will come first
r = a_str[0]
for i in range(1, len(a)):
mulsym = '*' if a[i-1].is_number else '.*'
r = r + mulsym + a_str[i]
return r
if not b:
return sign + multjoin(a, a_str)
elif len(b) == 1:
divsym = '/' if b[0].is_number else './'
return sign + multjoin(a, a_str) + divsym + b_str[0]
else:
divsym = '/' if all(bi.is_number for bi in b) else './'
return (sign + multjoin(a, a_str) +
divsym + "(%s)" % multjoin(b, b_str))
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{} {} {}".format(lhs_code, op, rhs_code)
def _print_Pow(self, expr):
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
PREC = precedence(expr)
if equal_valued(expr.exp, 0.5):
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if equal_valued(expr.exp, -0.5):
sym = '/' if expr.base.is_number else './'
return "1" + sym + "sqrt(%s)" % self._print(expr.base)
if equal_valued(expr.exp, -1):
sym = '/' if expr.base.is_number else './'
return "1" + sym + "%s" % self.parenthesize(expr.base, PREC)
return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol,
self.parenthesize(expr.exp, PREC))
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s^%s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_MatrixSolve(self, expr):
PREC = precedence(expr)
return "%s \\ %s" % (self.parenthesize(expr.matrix, PREC),
self.parenthesize(expr.vector, PREC))
def _print_Pi(self, expr):
return 'pi'
def _print_ImaginaryUnit(self, expr):
return "1i"
def _print_Exp1(self, expr):
return "exp(1)"
def _print_GoldenRatio(self, expr):
# FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)?
#return self._print((1+sqrt(S(5)))/2)
return "(1+sqrt(5))/2"
def _print_Assignment(self, expr):
from sympy.codegen.ast import Assignment
from sympy.functions.elementary.piecewise import Piecewise
from sympy.tensor.indexed import IndexedBase
# Copied from codeprinter, but remove special MatrixSymbol treatment
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_Infinity(self, expr):
return 'inf'
def _print_NegativeInfinity(self, expr):
return '-inf'
def _print_NaN(self, expr):
return 'NaN'
def _print_list(self, expr):
return '{' + ', '.join(self._print(a) for a in expr) + '}'
_print_tuple = _print_list
_print_Tuple = _print_list
_print_List = _print_list
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return str(expr).lower()
# Could generate quadrature code for definite Integrals?
#_print_Integral = _print_not_supported
def _print_MatrixBase(self, A):
# Handle zero dimensions:
if (A.rows, A.cols) == (0, 0):
return '[]'
elif S.Zero in A.shape:
return 'zeros(%s, %s)' % (A.rows, A.cols)
elif (A.rows, A.cols) == (1, 1):
# Octave does not distinguish between scalars and 1x1 matrices
return self._print(A[0, 0])
return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]])
for r in range(A.rows))
def _print_SparseRepMatrix(self, A):
from sympy.matrices import Matrix
L = A.col_list();
# make row vectors of the indices and entries
I = Matrix([[k[0] + 1 for k in L]])
J = Matrix([[k[1] + 1 for k in L]])
AIJ = Matrix([[k[2] for k in L]])
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
self._print(AIJ), A.rows, A.cols)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '(%s, %s)' % (expr.i + 1, expr.j + 1)
def _print_MatrixSlice(self, expr):
def strslice(x, lim):
l = x[0] + 1
h = x[1]
step = x[2]
lstr = self._print(l)
hstr = 'end' if h == lim else self._print(h)
if step == 1:
if l == 1 and h == lim:
return ':'
if l == h:
return lstr
else:
return lstr + ':' + hstr
else:
return ':'.join((lstr, self._print(step), hstr))
return (self._print(expr.parent) + '(' +
strslice(expr.rowslice, expr.parent.shape[0]) + ', ' +
strslice(expr.colslice, expr.parent.shape[1]) + ')')
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_KroneckerDelta(self, expr):
prec = PRECEDENCE["Pow"]
return "double(%s == %s)" % tuple(self.parenthesize(x, prec)
for x in expr.args)
def _print_HadamardProduct(self, expr):
return '.*'.join([self.parenthesize(arg, precedence(expr))
for arg in expr.args])
def _print_HadamardPower(self, expr):
PREC = precedence(expr)
return '.**'.join([
self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC)
])
def _print_Identity(self, expr):
shape = expr.shape
if len(shape) == 2 and shape[0] == shape[1]:
shape = [shape[0]]
s = ", ".join(self._print(n) for n in shape)
return "eye(" + s + ")"
def _print_lowergamma(self, expr):
# Octave implements regularized incomplete gamma function
return "(gammainc({1}, {0}).*gamma({0}))".format(
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_uppergamma(self, expr):
return "(gammainc({1}, {0}, 'upper').*gamma({0}))".format(
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_sinc(self, expr):
#Note: Divide by pi because Octave implements normalized sinc function.
return "sinc(%s)" % self._print(expr.args[0]/S.Pi)
def _print_hankel1(self, expr):
return "besselh(%s, 1, %s)" % (self._print(expr.order),
self._print(expr.argument))
def _print_hankel2(self, expr):
return "besselh(%s, 2, %s)" % (self._print(expr.order),
self._print(expr.argument))
# Note: as of 2015, Octave doesn't have spherical Bessel functions
def _print_jn(self, expr):
from sympy.functions import sqrt, besselj
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
return self._print(expr2)
def _print_yn(self, expr):
from sympy.functions import sqrt, bessely
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
return self._print(expr2)
def _print_airyai(self, expr):
return "airy(0, %s)" % self._print(expr.args[0])
def _print_airyaiprime(self, expr):
return "airy(1, %s)" % self._print(expr.args[0])
def _print_airybi(self, expr):
return "airy(2, %s)" % self._print(expr.args[0])
def _print_airybiprime(self, expr):
return "airy(3, %s)" % self._print(expr.args[0])
def _print_expint(self, expr):
mu, x = expr.args
if mu != 1:
return self._print_not_supported(expr)
return "expint(%s)" % self._print(x)
def _one_or_two_reversed_args(self, expr):
assert len(expr.args) <= 2
return '{name}({args})'.format(
name=self.known_functions[expr.__class__.__name__],
args=", ".join([self._print(x) for x in reversed(expr.args)])
)
_print_DiracDelta = _print_LambertW = _one_or_two_reversed_args
def _nested_binary_math_func(self, expr):
return '{name}({arg1}, {arg2})'.format(
name=self.known_functions[expr.__class__.__name__],
arg1=self._print(expr.args[0]),
arg2=self._print(expr.func(*expr.args[1:]))
)
_print_Max = _print_Min = _nested_binary_math_func
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if self._settings["inline"]:
# Express each (cond, expr) pair in a nested Horner form:
# (condition) .* (expr) + (not cond) .* (<others>)
# Expressions that result in multiple statements won't work here.
ecpairs = ["({0}).*({1}) + (~({0})).*(".format
(self._print(c), self._print(e))
for e, c in expr.args[:-1]]
elast = "%s" % self._print(expr.args[-1].expr)
pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs)
# Note: current need these outer brackets for 2*pw. Would be
# nicer to teach parenthesize() to do this for us when needed!
return "(" + pw + ")"
else:
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s)" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("elseif (%s)" % self._print(c))
code0 = self._print(e)
lines.append(code0)
if i == len(expr.args) - 1:
lines.append("end")
return "\n".join(lines)
def _print_zeta(self, expr):
if len(expr.args) == 1:
return "zeta(%s)" % self._print(expr.args[0])
else:
# Matlab two argument zeta is not equivalent to SymPy's
return self._print_not_supported(expr)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
# code mostly copied from ccode
if isinstance(code, str):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
dec_regex = ('^end$', '^elseif ', '^else$')
# pre-strip left-space from the code
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any(search(re, line) for re in inc_regex))
for line in code ]
decrease = [ int(any(search(re, line) for re in dec_regex))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line in ('', '\n'):
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def octave_code(expr, assign_to=None, **settings):
r"""Converts `expr` to a string of Octave (or Matlab) code.
The string uses a subset of the Octave language for Matlab compatibility.
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
Examples
========
>>> from sympy import octave_code, symbols, sin, pi
>>> x = symbols('x')
>>> octave_code(sin(x).series(x).removeO())
'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling
>>> x, y, tau = symbols("x, y, tau")
>>> octave_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between
symbols. This is because its very common in Octave to write "vectorized"
code. It is harmless if the values are scalars.
>>> octave_code(sin(pi*x*y), assign_to="s")
's = sin(pi*x.*y);'
If you need a matrix product "*" or matrix power "^", you can specify the
symbol as a ``MatrixSymbol``.
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> octave_code(3*pi*A**3)
'(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product.
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
A HadamardProduct can be used to specify componentwise multiplication ".*"
of two MatrixSymbols. There is currently there is no easy way to specify
scalar symbols, so sometimes the code might have some minor cosmetic
issues. For example, suppose x and y are scalars and A is a Matrix, then
while a human programmer might write "(x^2*y)*A^3", we generate:
>>> octave_code(x**2*y*A**3)
'(x.^2.*y)*A^3'
Matrices are supported using Octave inline notation. When using
``assign_to`` with matrices, the name can be specified either as a string
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 sin(x) ceil(x)];'
``Piecewise`` expressions are implemented with logical masking by default.
Alternatively, you can pass "inline=False" to use if-else conditionals.
Note that if the ``Piecewise`` lacks a default term, represented by
``(expr, True)`` then an error will be thrown. This is to prevent
generating an expression that may not evaluate to anything.
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> octave_code(pw, assign_to=tau)
'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
Note that any expression that can be generated normally can also exist
inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> octave_code(mat, assign_to='A')
'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e., [(argument_test,
cfunction_string)]. This can be used to call a custom Octave function.
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_octave_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> octave_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
"""
return OctaveCodePrinter(settings).doprint(expr, assign_to)
def print_octave_code(expr, **settings):
"""Prints the Octave (or Matlab) representation of the given expression.
See `octave_code` for the meaning of the optional arguments.
"""
print(octave_code(expr, **settings))
|