Spaces:
Sleeping
Sleeping
from sympy import sympify, Add, ImmutableMatrix as Matrix | |
from sympy.core.evalf import EvalfMixin | |
from sympy.printing.defaults import Printable | |
from mpmath.libmp.libmpf import prec_to_dps | |
__all__ = ['Dyadic'] | |
class Dyadic(Printable, EvalfMixin): | |
"""A Dyadic object. | |
See: | |
https://en.wikipedia.org/wiki/Dyadic_tensor | |
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill | |
A more powerful way to represent a rigid body's inertia. While it is more | |
complex, by choosing Dyadic components to be in body fixed basis vectors, | |
the resulting matrix is equivalent to the inertia tensor. | |
""" | |
is_number = False | |
def __init__(self, inlist): | |
""" | |
Just like Vector's init, you should not call this unless creating a | |
zero dyadic. | |
zd = Dyadic(0) | |
Stores a Dyadic as a list of lists; the inner list has the measure | |
number and the two unit vectors; the outerlist holds each unique | |
unit vector pair. | |
""" | |
self.args = [] | |
if inlist == 0: | |
inlist = [] | |
while len(inlist) != 0: | |
added = 0 | |
for i, v in enumerate(self.args): | |
if ((str(inlist[0][1]) == str(self.args[i][1])) and | |
(str(inlist[0][2]) == str(self.args[i][2]))): | |
self.args[i] = (self.args[i][0] + inlist[0][0], | |
inlist[0][1], inlist[0][2]) | |
inlist.remove(inlist[0]) | |
added = 1 | |
break | |
if added != 1: | |
self.args.append(inlist[0]) | |
inlist.remove(inlist[0]) | |
i = 0 | |
# This code is to remove empty parts from the list | |
while i < len(self.args): | |
if ((self.args[i][0] == 0) | (self.args[i][1] == 0) | | |
(self.args[i][2] == 0)): | |
self.args.remove(self.args[i]) | |
i -= 1 | |
i += 1 | |
def func(self): | |
"""Returns the class Dyadic. """ | |
return Dyadic | |
def __add__(self, other): | |
"""The add operator for Dyadic. """ | |
other = _check_dyadic(other) | |
return Dyadic(self.args + other.args) | |
__radd__ = __add__ | |
def __mul__(self, other): | |
"""Multiplies the Dyadic by a sympifyable expression. | |
Parameters | |
========== | |
other : Sympafiable | |
The scalar to multiply this Dyadic with | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame, outer | |
>>> N = ReferenceFrame('N') | |
>>> d = outer(N.x, N.x) | |
>>> 5 * d | |
5*(N.x|N.x) | |
""" | |
newlist = list(self.args) | |
other = sympify(other) | |
for i, v in enumerate(newlist): | |
newlist[i] = (other * newlist[i][0], newlist[i][1], | |
newlist[i][2]) | |
return Dyadic(newlist) | |
__rmul__ = __mul__ | |
def dot(self, other): | |
"""The inner product operator for a Dyadic and a Dyadic or Vector. | |
Parameters | |
========== | |
other : Dyadic or Vector | |
The other Dyadic or Vector to take the inner product with | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame, outer | |
>>> N = ReferenceFrame('N') | |
>>> D1 = outer(N.x, N.y) | |
>>> D2 = outer(N.y, N.y) | |
>>> D1.dot(D2) | |
(N.x|N.y) | |
>>> D1.dot(N.y) | |
N.x | |
""" | |
from sympy.physics.vector.vector import Vector, _check_vector | |
if isinstance(other, Dyadic): | |
other = _check_dyadic(other) | |
ol = Dyadic(0) | |
for v in self.args: | |
for v2 in other.args: | |
ol += v[0] * v2[0] * (v[2].dot(v2[1])) * (v[1].outer(v2[2])) | |
else: | |
other = _check_vector(other) | |
ol = Vector(0) | |
for v in self.args: | |
ol += v[0] * v[1] * (v[2].dot(other)) | |
return ol | |
# NOTE : supports non-advertised Dyadic & Dyadic, Dyadic & Vector notation | |
__and__ = dot | |
def __truediv__(self, other): | |
"""Divides the Dyadic by a sympifyable expression. """ | |
return self.__mul__(1 / other) | |
def __eq__(self, other): | |
"""Tests for equality. | |
Is currently weak; needs stronger comparison testing | |
""" | |
if other == 0: | |
other = Dyadic(0) | |
other = _check_dyadic(other) | |
if (self.args == []) and (other.args == []): | |
return True | |
elif (self.args == []) or (other.args == []): | |
return False | |
return set(self.args) == set(other.args) | |
def __ne__(self, other): | |
return not self == other | |
def __neg__(self): | |
return self * -1 | |
def _latex(self, printer): | |
ar = self.args # just to shorten things | |
if len(ar) == 0: | |
return str(0) | |
ol = [] # output list, to be concatenated to a string | |
for i, v in enumerate(ar): | |
# if the coef of the dyadic is 1, we skip the 1 | |
if ar[i][0] == 1: | |
ol.append(' + ' + printer._print(ar[i][1]) + r"\otimes " + | |
printer._print(ar[i][2])) | |
# if the coef of the dyadic is -1, we skip the 1 | |
elif ar[i][0] == -1: | |
ol.append(' - ' + | |
printer._print(ar[i][1]) + | |
r"\otimes " + | |
printer._print(ar[i][2])) | |
# If the coefficient of the dyadic is not 1 or -1, | |
# we might wrap it in parentheses, for readability. | |
elif ar[i][0] != 0: | |
arg_str = printer._print(ar[i][0]) | |
if isinstance(ar[i][0], Add): | |
arg_str = '(%s)' % arg_str | |
if arg_str.startswith('-'): | |
arg_str = arg_str[1:] | |
str_start = ' - ' | |
else: | |
str_start = ' + ' | |
ol.append(str_start + arg_str + printer._print(ar[i][1]) + | |
r"\otimes " + printer._print(ar[i][2])) | |
outstr = ''.join(ol) | |
if outstr.startswith(' + '): | |
outstr = outstr[3:] | |
elif outstr.startswith(' '): | |
outstr = outstr[1:] | |
return outstr | |
def _pretty(self, printer): | |
e = self | |
class Fake: | |
baseline = 0 | |
def render(self, *args, **kwargs): | |
ar = e.args # just to shorten things | |
mpp = printer | |
if len(ar) == 0: | |
return str(0) | |
bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|" | |
ol = [] # output list, to be concatenated to a string | |
for i, v in enumerate(ar): | |
# if the coef of the dyadic is 1, we skip the 1 | |
if ar[i][0] == 1: | |
ol.extend([" + ", | |
mpp.doprint(ar[i][1]), | |
bar, | |
mpp.doprint(ar[i][2])]) | |
# if the coef of the dyadic is -1, we skip the 1 | |
elif ar[i][0] == -1: | |
ol.extend([" - ", | |
mpp.doprint(ar[i][1]), | |
bar, | |
mpp.doprint(ar[i][2])]) | |
# If the coefficient of the dyadic is not 1 or -1, | |
# we might wrap it in parentheses, for readability. | |
elif ar[i][0] != 0: | |
if isinstance(ar[i][0], Add): | |
arg_str = mpp._print( | |
ar[i][0]).parens()[0] | |
else: | |
arg_str = mpp.doprint(ar[i][0]) | |
if arg_str.startswith("-"): | |
arg_str = arg_str[1:] | |
str_start = " - " | |
else: | |
str_start = " + " | |
ol.extend([str_start, arg_str, " ", | |
mpp.doprint(ar[i][1]), | |
bar, | |
mpp.doprint(ar[i][2])]) | |
outstr = "".join(ol) | |
if outstr.startswith(" + "): | |
outstr = outstr[3:] | |
elif outstr.startswith(" "): | |
outstr = outstr[1:] | |
return outstr | |
return Fake() | |
def __rsub__(self, other): | |
return (-1 * self) + other | |
def _sympystr(self, printer): | |
"""Printing method. """ | |
ar = self.args # just to shorten things | |
if len(ar) == 0: | |
return printer._print(0) | |
ol = [] # output list, to be concatenated to a string | |
for i, v in enumerate(ar): | |
# if the coef of the dyadic is 1, we skip the 1 | |
if ar[i][0] == 1: | |
ol.append(' + (' + printer._print(ar[i][1]) + '|' + | |
printer._print(ar[i][2]) + ')') | |
# if the coef of the dyadic is -1, we skip the 1 | |
elif ar[i][0] == -1: | |
ol.append(' - (' + printer._print(ar[i][1]) + '|' + | |
printer._print(ar[i][2]) + ')') | |
# If the coefficient of the dyadic is not 1 or -1, | |
# we might wrap it in parentheses, for readability. | |
elif ar[i][0] != 0: | |
arg_str = printer._print(ar[i][0]) | |
if isinstance(ar[i][0], Add): | |
arg_str = "(%s)" % arg_str | |
if arg_str[0] == '-': | |
arg_str = arg_str[1:] | |
str_start = ' - ' | |
else: | |
str_start = ' + ' | |
ol.append(str_start + arg_str + '*(' + | |
printer._print(ar[i][1]) + | |
'|' + printer._print(ar[i][2]) + ')') | |
outstr = ''.join(ol) | |
if outstr.startswith(' + '): | |
outstr = outstr[3:] | |
elif outstr.startswith(' '): | |
outstr = outstr[1:] | |
return outstr | |
def __sub__(self, other): | |
"""The subtraction operator. """ | |
return self.__add__(other * -1) | |
def cross(self, other): | |
"""Returns the dyadic resulting from the dyadic vector cross product: | |
Dyadic x Vector. | |
Parameters | |
========== | |
other : Vector | |
Vector to cross with. | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame, outer, cross | |
>>> N = ReferenceFrame('N') | |
>>> d = outer(N.x, N.x) | |
>>> cross(d, N.y) | |
(N.x|N.z) | |
""" | |
from sympy.physics.vector.vector import _check_vector | |
other = _check_vector(other) | |
ol = Dyadic(0) | |
for v in self.args: | |
ol += v[0] * (v[1].outer((v[2].cross(other)))) | |
return ol | |
# NOTE : supports non-advertised Dyadic ^ Vector notation | |
__xor__ = cross | |
def express(self, frame1, frame2=None): | |
"""Expresses this Dyadic in alternate frame(s) | |
The first frame is the list side expression, the second frame is the | |
right side; if Dyadic is in form A.x|B.y, you can express it in two | |
different frames. If no second frame is given, the Dyadic is | |
expressed in only one frame. | |
Calls the global express function | |
Parameters | |
========== | |
frame1 : ReferenceFrame | |
The frame to express the left side of the Dyadic in | |
frame2 : ReferenceFrame | |
If provided, the frame to express the right side of the Dyadic in | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols | |
>>> from sympy.physics.vector import init_vprinting | |
>>> init_vprinting(pretty_print=False) | |
>>> N = ReferenceFrame('N') | |
>>> q = dynamicsymbols('q') | |
>>> B = N.orientnew('B', 'Axis', [q, N.z]) | |
>>> d = outer(N.x, N.x) | |
>>> d.express(B, N) | |
cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) | |
""" | |
from sympy.physics.vector.functions import express | |
return express(self, frame1, frame2) | |
def to_matrix(self, reference_frame, second_reference_frame=None): | |
"""Returns the matrix form of the dyadic with respect to one or two | |
reference frames. | |
Parameters | |
---------- | |
reference_frame : ReferenceFrame | |
The reference frame that the rows and columns of the matrix | |
correspond to. If a second reference frame is provided, this | |
only corresponds to the rows of the matrix. | |
second_reference_frame : ReferenceFrame, optional, default=None | |
The reference frame that the columns of the matrix correspond | |
to. | |
Returns | |
------- | |
matrix : ImmutableMatrix, shape(3,3) | |
The matrix that gives the 2D tensor form. | |
Examples | |
======== | |
>>> from sympy import symbols, trigsimp | |
>>> from sympy.physics.vector import ReferenceFrame | |
>>> from sympy.physics.mechanics import inertia | |
>>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') | |
>>> N = ReferenceFrame('N') | |
>>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) | |
>>> inertia_dyadic.to_matrix(N) | |
Matrix([ | |
[Ixx, Ixy, Ixz], | |
[Ixy, Iyy, Iyz], | |
[Ixz, Iyz, Izz]]) | |
>>> beta = symbols('beta') | |
>>> A = N.orientnew('A', 'Axis', (beta, N.x)) | |
>>> trigsimp(inertia_dyadic.to_matrix(A)) | |
Matrix([ | |
[ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], | |
[ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], | |
[-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) | |
""" | |
if second_reference_frame is None: | |
second_reference_frame = reference_frame | |
return Matrix([i.dot(self).dot(j) for i in reference_frame for j in | |
second_reference_frame]).reshape(3, 3) | |
def doit(self, **hints): | |
"""Calls .doit() on each term in the Dyadic""" | |
return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])]) | |
for v in self.args], Dyadic(0)) | |
def dt(self, frame): | |
"""Take the time derivative of this Dyadic in a frame. | |
This function calls the global time_derivative method | |
Parameters | |
========== | |
frame : ReferenceFrame | |
The frame to take the time derivative in | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols | |
>>> from sympy.physics.vector import init_vprinting | |
>>> init_vprinting(pretty_print=False) | |
>>> N = ReferenceFrame('N') | |
>>> q = dynamicsymbols('q') | |
>>> B = N.orientnew('B', 'Axis', [q, N.z]) | |
>>> d = outer(N.x, N.x) | |
>>> d.dt(B) | |
- q'*(N.y|N.x) - q'*(N.x|N.y) | |
""" | |
from sympy.physics.vector.functions import time_derivative | |
return time_derivative(self, frame) | |
def simplify(self): | |
"""Returns a simplified Dyadic.""" | |
out = Dyadic(0) | |
for v in self.args: | |
out += Dyadic([(v[0].simplify(), v[1], v[2])]) | |
return out | |
def subs(self, *args, **kwargs): | |
"""Substitution on the Dyadic. | |
Examples | |
======== | |
>>> from sympy.physics.vector import ReferenceFrame | |
>>> from sympy import Symbol | |
>>> N = ReferenceFrame('N') | |
>>> s = Symbol('s') | |
>>> a = s*(N.x|N.x) | |
>>> a.subs({s: 2}) | |
2*(N.x|N.x) | |
""" | |
return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])]) | |
for v in self.args], Dyadic(0)) | |
def applyfunc(self, f): | |
"""Apply a function to each component of a Dyadic.""" | |
if not callable(f): | |
raise TypeError("`f` must be callable.") | |
out = Dyadic(0) | |
for a, b, c in self.args: | |
out += f(a) * (b.outer(c)) | |
return out | |
def _eval_evalf(self, prec): | |
if not self.args: | |
return self | |
new_args = [] | |
dps = prec_to_dps(prec) | |
for inlist in self.args: | |
new_inlist = list(inlist) | |
new_inlist[0] = inlist[0].evalf(n=dps) | |
new_args.append(tuple(new_inlist)) | |
return Dyadic(new_args) | |
def xreplace(self, rule): | |
""" | |
Replace occurrences of objects within the measure numbers of the | |
Dyadic. | |
Parameters | |
========== | |
rule : dict-like | |
Expresses a replacement rule. | |
Returns | |
======= | |
Dyadic | |
Result of the replacement. | |
Examples | |
======== | |
>>> from sympy import symbols, pi | |
>>> from sympy.physics.vector import ReferenceFrame, outer | |
>>> N = ReferenceFrame('N') | |
>>> D = outer(N.x, N.x) | |
>>> x, y, z = symbols('x y z') | |
>>> ((1 + x*y) * D).xreplace({x: pi}) | |
(pi*y + 1)*(N.x|N.x) | |
>>> ((1 + x*y) * D).xreplace({x: pi, y: 2}) | |
(1 + 2*pi)*(N.x|N.x) | |
Replacements occur only if an entire node in the expression tree is | |
matched: | |
>>> ((x*y + z) * D).xreplace({x*y: pi}) | |
(z + pi)*(N.x|N.x) | |
>>> ((x*y*z) * D).xreplace({x*y: pi}) | |
x*y*z*(N.x|N.x) | |
""" | |
new_args = [] | |
for inlist in self.args: | |
new_inlist = list(inlist) | |
new_inlist[0] = new_inlist[0].xreplace(rule) | |
new_args.append(tuple(new_inlist)) | |
return Dyadic(new_args) | |
def _check_dyadic(other): | |
if not isinstance(other, Dyadic): | |
raise TypeError('A Dyadic must be supplied') | |
return other | |