File size: 18,222 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
from sympy import sympify, Add, ImmutableMatrix as Matrix
from sympy.core.evalf import EvalfMixin
from sympy.printing.defaults import Printable

from mpmath.libmp.libmpf import prec_to_dps


__all__ = ['Dyadic']


class Dyadic(Printable, EvalfMixin):
    """A Dyadic object.

    See:
    https://en.wikipedia.org/wiki/Dyadic_tensor
    Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill

    A more powerful way to represent a rigid body's inertia. While it is more
    complex, by choosing Dyadic components to be in body fixed basis vectors,
    the resulting matrix is equivalent to the inertia tensor.

    """

    is_number = False

    def __init__(self, inlist):
        """
        Just like Vector's init, you should not call this unless creating a
        zero dyadic.

        zd = Dyadic(0)

        Stores a Dyadic as a list of lists; the inner list has the measure
        number and the two unit vectors; the outerlist holds each unique
        unit vector pair.

        """

        self.args = []
        if inlist == 0:
            inlist = []
        while len(inlist) != 0:
            added = 0
            for i, v in enumerate(self.args):
                if ((str(inlist[0][1]) == str(self.args[i][1])) and
                        (str(inlist[0][2]) == str(self.args[i][2]))):
                    self.args[i] = (self.args[i][0] + inlist[0][0],
                                    inlist[0][1], inlist[0][2])
                    inlist.remove(inlist[0])
                    added = 1
                    break
            if added != 1:
                self.args.append(inlist[0])
                inlist.remove(inlist[0])
        i = 0
        # This code is to remove empty parts from the list
        while i < len(self.args):
            if ((self.args[i][0] == 0) | (self.args[i][1] == 0) |
                    (self.args[i][2] == 0)):
                self.args.remove(self.args[i])
                i -= 1
            i += 1

    @property
    def func(self):
        """Returns the class Dyadic. """
        return Dyadic

    def __add__(self, other):
        """The add operator for Dyadic. """
        other = _check_dyadic(other)
        return Dyadic(self.args + other.args)

    __radd__ = __add__

    def __mul__(self, other):
        """Multiplies the Dyadic by a sympifyable expression.

        Parameters
        ==========

        other : Sympafiable
            The scalar to multiply this Dyadic with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer
        >>> N = ReferenceFrame('N')
        >>> d = outer(N.x, N.x)
        >>> 5 * d
        5*(N.x|N.x)

        """
        newlist = list(self.args)
        other = sympify(other)
        for i, v in enumerate(newlist):
            newlist[i] = (other * newlist[i][0], newlist[i][1],
                          newlist[i][2])
        return Dyadic(newlist)

    __rmul__ = __mul__

    def dot(self, other):
        """The inner product operator for a Dyadic and a Dyadic or Vector.

        Parameters
        ==========

        other : Dyadic or Vector
            The other Dyadic or Vector to take the inner product with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer
        >>> N = ReferenceFrame('N')
        >>> D1 = outer(N.x, N.y)
        >>> D2 = outer(N.y, N.y)
        >>> D1.dot(D2)
        (N.x|N.y)
        >>> D1.dot(N.y)
        N.x

        """
        from sympy.physics.vector.vector import Vector, _check_vector
        if isinstance(other, Dyadic):
            other = _check_dyadic(other)
            ol = Dyadic(0)
            for v in self.args:
                for v2 in other.args:
                    ol += v[0] * v2[0] * (v[2].dot(v2[1])) * (v[1].outer(v2[2]))
        else:
            other = _check_vector(other)
            ol = Vector(0)
            for v in self.args:
                ol += v[0] * v[1] * (v[2].dot(other))
        return ol

    # NOTE : supports non-advertised Dyadic & Dyadic, Dyadic & Vector notation
    __and__ = dot

    def __truediv__(self, other):
        """Divides the Dyadic by a sympifyable expression. """
        return self.__mul__(1 / other)

    def __eq__(self, other):
        """Tests for equality.

        Is currently weak; needs stronger comparison testing

        """

        if other == 0:
            other = Dyadic(0)
        other = _check_dyadic(other)
        if (self.args == []) and (other.args == []):
            return True
        elif (self.args == []) or (other.args == []):
            return False
        return set(self.args) == set(other.args)

    def __ne__(self, other):
        return not self == other

    def __neg__(self):
        return self * -1

    def _latex(self, printer):
        ar = self.args  # just to shorten things
        if len(ar) == 0:
            return str(0)
        ol = []  # output list, to be concatenated to a string
        for i, v in enumerate(ar):
            # if the coef of the dyadic is 1, we skip the 1
            if ar[i][0] == 1:
                ol.append(' + ' + printer._print(ar[i][1]) + r"\otimes " +
                          printer._print(ar[i][2]))
            # if the coef of the dyadic is -1, we skip the 1
            elif ar[i][0] == -1:
                ol.append(' - ' +
                          printer._print(ar[i][1]) +
                          r"\otimes " +
                          printer._print(ar[i][2]))
            # If the coefficient of the dyadic is not 1 or -1,
            # we might wrap it in parentheses, for readability.
            elif ar[i][0] != 0:
                arg_str = printer._print(ar[i][0])
                if isinstance(ar[i][0], Add):
                    arg_str = '(%s)' % arg_str
                if arg_str.startswith('-'):
                    arg_str = arg_str[1:]
                    str_start = ' - '
                else:
                    str_start = ' + '
                ol.append(str_start + arg_str + printer._print(ar[i][1]) +
                          r"\otimes " + printer._print(ar[i][2]))
        outstr = ''.join(ol)
        if outstr.startswith(' + '):
            outstr = outstr[3:]
        elif outstr.startswith(' '):
            outstr = outstr[1:]
        return outstr

    def _pretty(self, printer):
        e = self

        class Fake:
            baseline = 0

            def render(self, *args, **kwargs):
                ar = e.args  # just to shorten things
                mpp = printer
                if len(ar) == 0:
                    return str(0)
                bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|"
                ol = []  # output list, to be concatenated to a string
                for i, v in enumerate(ar):
                    # if the coef of the dyadic is 1, we skip the 1
                    if ar[i][0] == 1:
                        ol.extend([" + ",
                                  mpp.doprint(ar[i][1]),
                                  bar,
                                  mpp.doprint(ar[i][2])])

                    # if the coef of the dyadic is -1, we skip the 1
                    elif ar[i][0] == -1:
                        ol.extend([" - ",
                                  mpp.doprint(ar[i][1]),
                                  bar,
                                  mpp.doprint(ar[i][2])])

                    # If the coefficient of the dyadic is not 1 or -1,
                    # we might wrap it in parentheses, for readability.
                    elif ar[i][0] != 0:
                        if isinstance(ar[i][0], Add):
                            arg_str = mpp._print(
                                ar[i][0]).parens()[0]
                        else:
                            arg_str = mpp.doprint(ar[i][0])
                        if arg_str.startswith("-"):
                            arg_str = arg_str[1:]
                            str_start = " - "
                        else:
                            str_start = " + "
                        ol.extend([str_start, arg_str, " ",
                                  mpp.doprint(ar[i][1]),
                                  bar,
                                  mpp.doprint(ar[i][2])])

                outstr = "".join(ol)
                if outstr.startswith(" + "):
                    outstr = outstr[3:]
                elif outstr.startswith(" "):
                    outstr = outstr[1:]
                return outstr
        return Fake()

    def __rsub__(self, other):
        return (-1 * self) + other

    def _sympystr(self, printer):
        """Printing method. """
        ar = self.args  # just to shorten things
        if len(ar) == 0:
            return printer._print(0)
        ol = []  # output list, to be concatenated to a string
        for i, v in enumerate(ar):
            # if the coef of the dyadic is 1, we skip the 1
            if ar[i][0] == 1:
                ol.append(' + (' + printer._print(ar[i][1]) + '|' +
                          printer._print(ar[i][2]) + ')')
            # if the coef of the dyadic is -1, we skip the 1
            elif ar[i][0] == -1:
                ol.append(' - (' + printer._print(ar[i][1]) + '|' +
                          printer._print(ar[i][2]) + ')')
            # If the coefficient of the dyadic is not 1 or -1,
            # we might wrap it in parentheses, for readability.
            elif ar[i][0] != 0:
                arg_str = printer._print(ar[i][0])
                if isinstance(ar[i][0], Add):
                    arg_str = "(%s)" % arg_str
                if arg_str[0] == '-':
                    arg_str = arg_str[1:]
                    str_start = ' - '
                else:
                    str_start = ' + '
                ol.append(str_start + arg_str + '*(' +
                          printer._print(ar[i][1]) +
                          '|' + printer._print(ar[i][2]) + ')')
        outstr = ''.join(ol)
        if outstr.startswith(' + '):
            outstr = outstr[3:]
        elif outstr.startswith(' '):
            outstr = outstr[1:]
        return outstr

    def __sub__(self, other):
        """The subtraction operator. """
        return self.__add__(other * -1)

    def cross(self, other):
        """Returns the dyadic resulting from the dyadic vector cross product:
        Dyadic x Vector.

        Parameters
        ==========
        other : Vector
            Vector to cross with.

        Examples
        ========
        >>> from sympy.physics.vector import ReferenceFrame, outer, cross
        >>> N = ReferenceFrame('N')
        >>> d = outer(N.x, N.x)
        >>> cross(d, N.y)
        (N.x|N.z)

        """
        from sympy.physics.vector.vector import _check_vector
        other = _check_vector(other)
        ol = Dyadic(0)
        for v in self.args:
            ol += v[0] * (v[1].outer((v[2].cross(other))))
        return ol

    # NOTE : supports non-advertised Dyadic ^ Vector notation
    __xor__ = cross

    def express(self, frame1, frame2=None):
        """Expresses this Dyadic in alternate frame(s)

        The first frame is the list side expression, the second frame is the
        right side; if Dyadic is in form A.x|B.y, you can express it in two
        different frames. If no second frame is given, the Dyadic is
        expressed in only one frame.

        Calls the global express function

        Parameters
        ==========

        frame1 : ReferenceFrame
            The frame to express the left side of the Dyadic in
        frame2 : ReferenceFrame
            If provided, the frame to express the right side of the Dyadic in

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> N = ReferenceFrame('N')
        >>> q = dynamicsymbols('q')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> d = outer(N.x, N.x)
        >>> d.express(B, N)
        cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)

        """
        from sympy.physics.vector.functions import express
        return express(self, frame1, frame2)

    def to_matrix(self, reference_frame, second_reference_frame=None):
        """Returns the matrix form of the dyadic with respect to one or two
        reference frames.

        Parameters
        ----------
        reference_frame : ReferenceFrame
            The reference frame that the rows and columns of the matrix
            correspond to. If a second reference frame is provided, this
            only corresponds to the rows of the matrix.
        second_reference_frame : ReferenceFrame, optional, default=None
            The reference frame that the columns of the matrix correspond
            to.

        Returns
        -------
        matrix : ImmutableMatrix, shape(3,3)
            The matrix that gives the 2D tensor form.

        Examples
        ========

        >>> from sympy import symbols, trigsimp
        >>> from sympy.physics.vector import ReferenceFrame
        >>> from sympy.physics.mechanics import inertia
        >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz')
        >>> N = ReferenceFrame('N')
        >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)
        >>> inertia_dyadic.to_matrix(N)
        Matrix([
        [Ixx, Ixy, Ixz],
        [Ixy, Iyy, Iyz],
        [Ixz, Iyz, Izz]])
        >>> beta = symbols('beta')
        >>> A = N.orientnew('A', 'Axis', (beta, N.x))
        >>> trigsimp(inertia_dyadic.to_matrix(A))
        Matrix([
        [                           Ixx,                                           Ixy*cos(beta) + Ixz*sin(beta),                                           -Ixy*sin(beta) + Ixz*cos(beta)],
        [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2,                 -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2],
        [-Ixy*sin(beta) + Ixz*cos(beta),                -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]])

        """

        if second_reference_frame is None:
            second_reference_frame = reference_frame

        return Matrix([i.dot(self).dot(j) for i in reference_frame for j in
                      second_reference_frame]).reshape(3, 3)

    def doit(self, **hints):
        """Calls .doit() on each term in the Dyadic"""
        return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])])
                    for v in self.args], Dyadic(0))

    def dt(self, frame):
        """Take the time derivative of this Dyadic in a frame.

        This function calls the global time_derivative method

        Parameters
        ==========

        frame : ReferenceFrame
            The frame to take the time derivative in

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> N = ReferenceFrame('N')
        >>> q = dynamicsymbols('q')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> d = outer(N.x, N.x)
        >>> d.dt(B)
        - q'*(N.y|N.x) - q'*(N.x|N.y)

        """
        from sympy.physics.vector.functions import time_derivative
        return time_derivative(self, frame)

    def simplify(self):
        """Returns a simplified Dyadic."""
        out = Dyadic(0)
        for v in self.args:
            out += Dyadic([(v[0].simplify(), v[1], v[2])])
        return out

    def subs(self, *args, **kwargs):
        """Substitution on the Dyadic.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> from sympy import Symbol
        >>> N = ReferenceFrame('N')
        >>> s = Symbol('s')
        >>> a = s*(N.x|N.x)
        >>> a.subs({s: 2})
        2*(N.x|N.x)

        """

        return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])])
                    for v in self.args], Dyadic(0))

    def applyfunc(self, f):
        """Apply a function to each component of a Dyadic."""
        if not callable(f):
            raise TypeError("`f` must be callable.")

        out = Dyadic(0)
        for a, b, c in self.args:
            out += f(a) * (b.outer(c))
        return out

    def _eval_evalf(self, prec):
        if not self.args:
            return self
        new_args = []
        dps = prec_to_dps(prec)
        for inlist in self.args:
            new_inlist = list(inlist)
            new_inlist[0] = inlist[0].evalf(n=dps)
            new_args.append(tuple(new_inlist))
        return Dyadic(new_args)

    def xreplace(self, rule):
        """
        Replace occurrences of objects within the measure numbers of the
        Dyadic.

        Parameters
        ==========

        rule : dict-like
            Expresses a replacement rule.

        Returns
        =======

        Dyadic
            Result of the replacement.

        Examples
        ========

        >>> from sympy import symbols, pi
        >>> from sympy.physics.vector import ReferenceFrame, outer
        >>> N = ReferenceFrame('N')
        >>> D = outer(N.x, N.x)
        >>> x, y, z = symbols('x y z')
        >>> ((1 + x*y) * D).xreplace({x: pi})
        (pi*y + 1)*(N.x|N.x)
        >>> ((1 + x*y) * D).xreplace({x: pi, y: 2})
        (1 + 2*pi)*(N.x|N.x)

        Replacements occur only if an entire node in the expression tree is
        matched:

        >>> ((x*y + z) * D).xreplace({x*y: pi})
        (z + pi)*(N.x|N.x)
        >>> ((x*y*z) * D).xreplace({x*y: pi})
        x*y*z*(N.x|N.x)

        """

        new_args = []
        for inlist in self.args:
            new_inlist = list(inlist)
            new_inlist[0] = new_inlist[0].xreplace(rule)
            new_args.append(tuple(new_inlist))
        return Dyadic(new_args)


def _check_dyadic(other):
    if not isinstance(other, Dyadic):
        raise TypeError('A Dyadic must be supplied')
    return other