Spaces:
Sleeping
Sleeping
from sympy.physics.secondquant import ( | |
Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, | |
matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, | |
AnnihilateBoson, CreateBoson, BosonicOperator, | |
F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, | |
evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, | |
PermutationOperator, simplify_index_permutations, | |
_sort_anticommuting_fermions, _get_ordered_dummies, | |
substitute_dummies, FockStateBosonKet, | |
ContractionAppliesOnlyToFermions | |
) | |
from sympy.concrete.summations import Sum | |
from sympy.core.function import (Function, expand) | |
from sympy.core.numbers import (I, Rational) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Dummy, Symbol, symbols) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.printing.repr import srepr | |
from sympy.simplify.simplify import simplify | |
from sympy.testing.pytest import slow, raises | |
from sympy.printing.latex import latex | |
def test_PermutationOperator(): | |
p, q, r, s = symbols('p,q,r,s') | |
f, g, h, i = map(Function, 'fghi') | |
P = PermutationOperator | |
assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) | |
assert P(p, q).get_permuted(f(p, q)) == -f(q, p) | |
assert P(p, q).get_permuted(f(p)) == f(p) | |
expr = (f(p)*g(q)*h(r)*i(s) | |
- f(q)*g(p)*h(r)*i(s) | |
- f(p)*g(q)*h(s)*i(r) | |
+ f(q)*g(p)*h(s)*i(r)) | |
perms = [P(p, q), P(r, s)] | |
assert (simplify_index_permutations(expr, perms) == | |
P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) | |
assert latex(P(p, q)) == 'P(pq)' | |
def test_index_permutations_with_dummies(): | |
a, b, c, d = symbols('a b c d') | |
p, q, r, s = symbols('p q r s', cls=Dummy) | |
f, g = map(Function, 'fg') | |
P = PermutationOperator | |
# No dummy substitution necessary | |
expr = f(a, b, p, q) - f(b, a, p, q) | |
assert simplify_index_permutations( | |
expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) | |
# Cases where dummy substitution is needed | |
expected = P(a, b)*substitute_dummies(f(a, b, p, q)) | |
expr = f(a, b, p, q) - f(b, a, q, p) | |
result = simplify_index_permutations(expr, [P(a, b)]) | |
assert expected == substitute_dummies(result) | |
expr = f(a, b, q, p) - f(b, a, p, q) | |
result = simplify_index_permutations(expr, [P(a, b)]) | |
assert expected == substitute_dummies(result) | |
# A case where nothing can be done | |
expr = f(a, b, q, p) - g(b, a, p, q) | |
result = simplify_index_permutations(expr, [P(a, b)]) | |
assert expr == result | |
def test_dagger(): | |
i, j, n, m = symbols('i,j,n,m') | |
assert Dagger(1) == 1 | |
assert Dagger(1.0) == 1.0 | |
assert Dagger(2*I) == -2*I | |
assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0 | |
assert Dagger(BKet([n])) == BBra([n]) | |
assert Dagger(B(0)) == Bd(0) | |
assert Dagger(Bd(0)) == B(0) | |
assert Dagger(B(n)) == Bd(n) | |
assert Dagger(Bd(n)) == B(n) | |
assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) | |
assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute | |
assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) | |
assert Dagger(B(n)**10) == Dagger(B(n))**10 | |
assert Dagger('a') == Dagger(Symbol('a')) | |
assert Dagger(Dagger('a')) == Symbol('a') | |
def test_operator(): | |
i, j = symbols('i,j') | |
o = BosonicOperator(i) | |
assert o.state == i | |
assert o.is_symbolic | |
o = BosonicOperator(1) | |
assert o.state == 1 | |
assert not o.is_symbolic | |
def test_create(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = Bd(i) | |
assert latex(o) == "{b^\\dagger_{i}}" | |
assert isinstance(o, CreateBoson) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = Bd(0) | |
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) | |
o = Bd(n) | |
assert o.apply_operator(BKet([n])) == o*BKet([n]) | |
def test_annihilate(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = B(i) | |
assert latex(o) == "b_{i}" | |
assert isinstance(o, AnnihilateBoson) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = B(0) | |
assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) | |
o = B(n) | |
assert o.apply_operator(BKet([n])) == o*BKet([n]) | |
def test_basic_state(): | |
i, j, n, m = symbols('i,j,n,m') | |
s = BosonState([0, 1, 2, 3, 4]) | |
assert len(s) == 5 | |
assert s.args[0] == tuple(range(5)) | |
assert s.up(0) == BosonState([1, 1, 2, 3, 4]) | |
assert s.down(4) == BosonState([0, 1, 2, 3, 3]) | |
for i in range(5): | |
assert s.up(i).down(i) == s | |
assert s.down(0) == 0 | |
for i in range(5): | |
assert s[i] == i | |
s = BosonState([n, m]) | |
assert s.down(0) == BosonState([n - 1, m]) | |
assert s.up(0) == BosonState([n + 1, m]) | |
def test_basic_apply(): | |
n = symbols("n") | |
e = B(0)*BKet([n]) | |
assert apply_operators(e) == sqrt(n)*BKet([n - 1]) | |
e = Bd(0)*BKet([n]) | |
assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) | |
def test_complex_apply(): | |
n, m = symbols("n,m") | |
o = Bd(0)*B(0)*Bd(1)*B(0) | |
e = apply_operators(o*BKet([n, m])) | |
answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) | |
assert expand(e) == expand(answer) | |
def test_number_operator(): | |
n = symbols("n") | |
o = Bd(0)*B(0) | |
e = apply_operators(o*BKet([n])) | |
assert e == n*BKet([n]) | |
def test_inner_product(): | |
i, j, k, l = symbols('i,j,k,l') | |
s1 = BBra([0]) | |
s2 = BKet([1]) | |
assert InnerProduct(s1, Dagger(s1)) == 1 | |
assert InnerProduct(s1, s2) == 0 | |
s1 = BBra([i, j]) | |
s2 = BKet([k, l]) | |
r = InnerProduct(s1, s2) | |
assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) | |
def test_symbolic_matrix_elements(): | |
n, m = symbols('n,m') | |
s1 = BBra([n]) | |
s2 = BKet([m]) | |
o = B(0) | |
e = apply_operators(s1*o*s2) | |
assert e == sqrt(m)*KroneckerDelta(n, m - 1) | |
def test_matrix_elements(): | |
b = VarBosonicBasis(5) | |
o = B(0) | |
m = matrix_rep(o, b) | |
for i in range(4): | |
assert m[i, i + 1] == sqrt(i + 1) | |
o = Bd(0) | |
m = matrix_rep(o, b) | |
for i in range(4): | |
assert m[i + 1, i] == sqrt(i + 1) | |
def test_fixed_bosonic_basis(): | |
b = FixedBosonicBasis(2, 2) | |
# assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] | |
state = b.state(1) | |
assert state == FockStateBosonKet((1, 1)) | |
assert b.index(state) == 1 | |
assert b.state(1) == b[1] | |
assert len(b) == 3 | |
assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' | |
assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' | |
assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' | |
def test_sho(): | |
n, m = symbols('n,m') | |
h_n = Bd(n)*B(n)*(n + S.Half) | |
H = Sum(h_n, (n, 0, 5)) | |
o = H.doit(deep=False) | |
b = FixedBosonicBasis(2, 6) | |
m = matrix_rep(o, b) | |
# We need to double check these energy values to make sure that they | |
# are correct and have the proper degeneracies! | |
diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] | |
for i in range(len(diag)): | |
assert diag[i] == m[i, i] | |
def test_commutation(): | |
n, m = symbols("n,m", above_fermi=True) | |
c = Commutator(B(0), Bd(0)) | |
assert c == 1 | |
c = Commutator(Bd(0), B(0)) | |
assert c == -1 | |
c = Commutator(B(n), Bd(0)) | |
assert c == KroneckerDelta(n, 0) | |
c = Commutator(B(0), B(0)) | |
assert c == 0 | |
c = Commutator(B(0), Bd(0)) | |
e = simplify(apply_operators(c*BKet([n]))) | |
assert e == BKet([n]) | |
c = Commutator(B(0), B(1)) | |
e = simplify(apply_operators(c*BKet([n, m]))) | |
assert e == 0 | |
c = Commutator(F(m), Fd(m)) | |
assert c == +1 - 2*NO(Fd(m)*F(m)) | |
c = Commutator(Fd(m), F(m)) | |
assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) | |
C = Commutator | |
X, Y, Z = symbols('X,Y,Z', commutative=False) | |
assert C(C(X, Y), Z) != 0 | |
assert C(C(X, Z), Y) != 0 | |
assert C(Y, C(X, Z)) != 0 | |
i, j, k, l = symbols('i,j,k,l', below_fermi=True) | |
a, b, c, d = symbols('a,b,c,d', above_fermi=True) | |
p, q, r, s = symbols('p,q,r,s') | |
D = KroneckerDelta | |
assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) | |
assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) | |
assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 | |
c1 = Commutator(F(a), Fd(a)) | |
assert Commutator.eval(c1, c1) == 0 | |
c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) | |
assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]' | |
assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' | |
assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' | |
def test_create_f(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = Fd(i) | |
assert isinstance(o, CreateFermion) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = Fd(1) | |
assert o.apply_operator(FKet([n])) == FKet([1, n]) | |
assert o.apply_operator(FKet([n])) == -FKet([n, 1]) | |
o = Fd(n) | |
assert o.apply_operator(FKet([])) == FKet([n]) | |
vacuum = FKet([], fermi_level=4) | |
assert vacuum == FKet([], fermi_level=4) | |
i, j, k, l = symbols('i,j,k,l', below_fermi=True) | |
a, b, c, d = symbols('a,b,c,d', above_fermi=True) | |
p, q, r, s = symbols('p,q,r,s') | |
assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) | |
assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) | |
assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) | |
assert repr(Fd(p)) == 'CreateFermion(p)' | |
assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" | |
assert latex(Fd(p)) == r'{a^\dagger_{p}}' | |
def test_annihilate_f(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = F(i) | |
assert isinstance(o, AnnihilateFermion) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = F(1) | |
assert o.apply_operator(FKet([1, n])) == FKet([n]) | |
assert o.apply_operator(FKet([n, 1])) == -FKet([n]) | |
o = F(n) | |
assert o.apply_operator(FKet([n])) == FKet([]) | |
i, j, k, l = symbols('i,j,k,l', below_fermi=True) | |
a, b, c, d = symbols('a,b,c,d', above_fermi=True) | |
p, q, r, s = symbols('p,q,r,s') | |
assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 | |
assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 | |
assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 | |
assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) | |
assert str(F(p)) == 'f(p)' | |
assert repr(F(p)) == 'AnnihilateFermion(p)' | |
assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" | |
assert latex(F(p)) == 'a_{p}' | |
def test_create_b(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = Bd(i) | |
assert isinstance(o, CreateBoson) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = Bd(0) | |
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) | |
o = Bd(n) | |
assert o.apply_operator(BKet([n])) == o*BKet([n]) | |
def test_annihilate_b(): | |
i, j, n, m = symbols('i,j,n,m') | |
o = B(i) | |
assert isinstance(o, AnnihilateBoson) | |
o = o.subs(i, j) | |
assert o.atoms(Symbol) == {j} | |
o = B(0) | |
def test_wicks(): | |
p, q, r, s = symbols('p,q,r,s', above_fermi=True) | |
# Testing for particles only | |
str = F(p)*Fd(q) | |
assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) | |
str = Fd(p)*F(q) | |
assert wicks(str) == NO(Fd(p)*F(q)) | |
str = F(p)*Fd(q)*F(r)*Fd(s) | |
nstr = wicks(str) | |
fasit = NO( | |
KroneckerDelta(p, q)*KroneckerDelta(r, s) | |
+ KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) | |
+ KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) | |
- KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) | |
- AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) | |
assert nstr == fasit | |
assert (p*q*nstr).expand() == wicks(p*q*str) | |
assert (nstr*p*q*2).expand() == wicks(str*p*q*2) | |
# Testing CC equations particles and holes | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
p, q, r, s = symbols('p q r s', cls=Dummy) | |
assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == | |
NO(F(a)*F(i)*F(j)*Fd(b)) + | |
KroneckerDelta(a, b)*NO(F(i)*F(j))) | |
assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == | |
NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - | |
KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) | |
expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) | |
assert (expr == | |
-KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - | |
KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - | |
KroneckerDelta(i, k)*KroneckerDelta(j, l) + | |
KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + | |
NO(Fd(i)*Fd(j)*F(k)*F(l))) | |
expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) | |
assert (expr == | |
-KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - | |
KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - | |
KroneckerDelta(a, c)*KroneckerDelta(b, d) + | |
KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + | |
NO(F(a)*F(b)*Fd(c)*Fd(d))) | |
def test_NO(): | |
i, j, k, l = symbols('i j k l', below_fermi=True) | |
a, b, c, d = symbols('a b c d', above_fermi=True) | |
p, q, r, s = symbols('p q r s', cls=Dummy) | |
assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == | |
NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) | |
assert (NO(Fd(i)*NO(F(j)*Fd(a))) == | |
NO(Fd(i)*F(j)*Fd(a))) | |
assert NO(1) == 1 | |
assert NO(i) == i | |
assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == | |
NO(Fd(a)*Fd(b)*F(c)) + | |
NO(Fd(a)*Fd(b)*F(d))) | |
assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) | |
assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) | |
assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == | |
NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) | |
assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == | |
NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) | |
expr = NO(Fd(p)*F(q))._remove_brackets() | |
assert wicks(expr) == NO(expr) | |
assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) | |
no = NO(Fd(a)*F(i)*F(b)*Fd(j)) | |
l1 = list(no.iter_q_creators()) | |
assert l1 == [0, 1] | |
l2 = list(no.iter_q_annihilators()) | |
assert l2 == [3, 2] | |
no = NO(Fd(a)*Fd(i)) | |
assert no.has_q_creators == 1 | |
assert no.has_q_annihilators == -1 | |
assert str(no) == ':CreateFermion(a)*CreateFermion(i):' | |
assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' | |
assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}' | |
raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) | |
def test_sorting(): | |
i, j = symbols('i,j', below_fermi=True) | |
a, b = symbols('a,b', above_fermi=True) | |
p, q = symbols('p,q') | |
# p, q | |
assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) | |
assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) | |
# i, p | |
assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) | |
assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) | |
assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) | |
assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) | |
assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) | |
assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) | |
assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) | |
assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) | |
# a, p | |
assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) | |
assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) | |
assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) | |
assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) | |
assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) | |
assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) | |
assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) | |
assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) | |
# i, a | |
assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) | |
assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) | |
assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) | |
assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) | |
assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) | |
assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) | |
def test_contraction(): | |
i, j, k, l = symbols('i,j,k,l', below_fermi=True) | |
a, b, c, d = symbols('a,b,c,d', above_fermi=True) | |
p, q, r, s = symbols('p,q,r,s') | |
assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) | |
assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) | |
assert contraction(F(a), Fd(i)) == 0 | |
assert contraction(Fd(a), F(i)) == 0 | |
assert contraction(F(i), Fd(a)) == 0 | |
assert contraction(Fd(i), F(a)) == 0 | |
assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) | |
restr = evaluate_deltas(contraction(Fd(p), F(q))) | |
assert restr.is_only_below_fermi | |
restr = evaluate_deltas(contraction(F(p), Fd(q))) | |
assert restr.is_only_above_fermi | |
raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) | |
def test_evaluate_deltas(): | |
i, j, k = symbols('i,j,k') | |
r = KroneckerDelta(i, j) * KroneckerDelta(j, k) | |
assert evaluate_deltas(r) == KroneckerDelta(i, k) | |
r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) | |
assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) | |
r = KroneckerDelta(1, j) * KroneckerDelta(j, k) | |
assert evaluate_deltas(r) == KroneckerDelta(1, k) | |
r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) | |
assert evaluate_deltas(r) == KroneckerDelta(2, k) | |
r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) | |
assert evaluate_deltas(r) == 0 | |
r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) | |
* KroneckerDelta(1, j) * KroneckerDelta(1, j)) | |
assert evaluate_deltas(r) == 0 | |
def test_Tensors(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
p, q, r, s = symbols('p q r s') | |
AT = AntiSymmetricTensor | |
assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) | |
assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) | |
assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) | |
assert AT('t', (a, a), (i, j)) == 0 | |
assert AT('t', (a, b), (i, i)) == 0 | |
assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) | |
assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) | |
tabij = AT('t', (a, b), (i, j)) | |
assert tabij.has(a) | |
assert tabij.has(b) | |
assert tabij.has(i) | |
assert tabij.has(j) | |
assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) | |
assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) | |
assert tabij.symbol == Symbol('t') | |
assert latex(tabij) == '{t^{ab}_{ij}}' | |
assert str(tabij) == 't((_a, _b),(_i, _j))' | |
assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) | |
assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) | |
def test_fully_contracted(): | |
i, j, k, l = symbols('i j k l', below_fermi=True) | |
a, b, c, d = symbols('a b c d', above_fermi=True) | |
p, q, r, s = symbols('p q r s', cls=Dummy) | |
Fock = (AntiSymmetricTensor('f', (p,), (q,))* | |
NO(Fd(p)*F(q))) | |
V = (AntiSymmetricTensor('v', (p, q), (r, s))* | |
NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 | |
Fai = wicks(NO(Fd(i)*F(a))*Fock, | |
keep_only_fully_contracted=True, | |
simplify_kronecker_deltas=True) | |
assert Fai == AntiSymmetricTensor('f', (a,), (i,)) | |
Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, | |
keep_only_fully_contracted=True, | |
simplify_kronecker_deltas=True) | |
assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) | |
def test_substitute_dummies_without_dummies(): | |
i, j = symbols('i,j') | |
assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 | |
assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 | |
def test_substitute_dummies_NO_operator(): | |
i, j = symbols('i j', cls=Dummy) | |
assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) | |
- att(j, i)*NO(Fd(j)*F(i))) == 0 | |
def test_substitute_dummies_SQ_operator(): | |
i, j = symbols('i j', cls=Dummy) | |
assert substitute_dummies(att(i, j)*Fd(i)*F(j) | |
- att(j, i)*Fd(j)*F(i)) == 0 | |
def test_substitute_dummies_new_indices(): | |
i, j = symbols('i j', below_fermi=True, cls=Dummy) | |
a, b = symbols('a b', above_fermi=True, cls=Dummy) | |
p, q = symbols('p q', cls=Dummy) | |
f = Function('f') | |
assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 | |
def test_substitute_dummies_substitution_order(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
f = Function('f') | |
from sympy.utilities.iterables import variations | |
for permut in variations([i, j, k, l], 4): | |
assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 | |
def test_dummy_order_inner_outer_lines_VT1T1T1(): | |
ii = symbols('i', below_fermi=True) | |
aa = symbols('a', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
# Coupled-Cluster T1 terms with V*T1*T1*T1 | |
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} | |
exprs = [ | |
# permut v and t <=> swapping internal lines, equivalent | |
# irrespective of symmetries in v | |
v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), | |
v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), | |
v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), | |
v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_dummy_order_inner_outer_lines_VT1T1T1T1(): | |
ii, jj = symbols('i j', below_fermi=True) | |
aa, bb = symbols('a b', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1 | |
exprs = [ | |
# permut t <=> swapping external lines, not equivalent | |
# except if v has certain symmetries. | |
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), | |
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), | |
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ | |
# permut v <=> swapping external lines, not equivalent | |
# except if v has certain symmetries. | |
# | |
# Note that in contrast to above, these permutations have identical | |
# dummy order. That is because the proximity to external indices | |
# has higher influence on the canonical dummy ordering than the | |
# position of a dummy on the factors. In fact, the terms here are | |
# similar in structure as the result of the dummy substitutions above. | |
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) == dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ | |
# permut t and v <=> swapping internal lines, equivalent. | |
# Canonical dummy order is different, and a consistent | |
# substitution reveals the equivalence. | |
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), | |
v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), | |
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), | |
v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_get_subNO(): | |
p, q, r = symbols('p,q,r') | |
assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r)) | |
assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r)) | |
assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q)) | |
def test_equivalent_internal_lines_VT1T1(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
exprs = [ # permute v. Different dummy order. Not equivalent. | |
v(i, j, a, b)*t(a, i)*t(b, j), | |
v(j, i, a, b)*t(a, i)*t(b, j), | |
v(i, j, b, a)*t(a, i)*t(b, j), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v. Different dummy order. Equivalent | |
v(i, j, a, b)*t(a, i)*t(b, j), | |
v(j, i, b, a)*t(a, i)*t(b, j), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ # permute t. Same dummy order, not equivalent. | |
v(i, j, a, b)*t(a, i)*t(b, j), | |
v(i, j, a, b)*t(b, i)*t(a, j), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) == dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v and t. Different dummy order, equivalent | |
v(i, j, a, b)*t(a, i)*t(b, j), | |
v(j, i, a, b)*t(a, j)*t(b, i), | |
v(i, j, b, a)*t(b, i)*t(a, j), | |
v(j, i, b, a)*t(b, j)*t(a, i), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_equivalent_internal_lines_VT2conjT2(): | |
# this diagram requires special handling in TCE | |
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) | |
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) | |
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) | |
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) | |
from sympy.utilities.iterables import variations | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
# v(abcd)t(abij)t(ijcd) | |
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
# v(abcd)t(abij)t(jicd) | |
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): | |
# These diagrams invokes _determine_ambiguous() because the | |
# dummies can not be ordered unambiguously by the key alone | |
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) | |
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) | |
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) | |
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) | |
from sympy.utilities.iterables import variations | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
# v(abcd)t(abij)t(cdij) | |
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert dums(base) != dums(expr) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
def test_equivalent_internal_lines_VT2(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
exprs = [ | |
# permute v. Same dummy order, not equivalent. | |
# | |
# This test show that the dummy order may not be sensitive to all | |
# index permutations. The following expressions have identical | |
# structure as the resulting terms from of the dummy substitutions | |
# in the test above. Here, all expressions have the same dummy | |
# order, so they cannot be simplified by means of dummy | |
# substitution. In order to simplify further, it is necessary to | |
# exploit symmetries in the objects, for instance if t or v is | |
# antisymmetric. | |
v(i, j, a, b)*t(a, b, i, j), | |
v(j, i, a, b)*t(a, b, i, j), | |
v(i, j, b, a)*t(a, b, i, j), | |
v(j, i, b, a)*t(a, b, i, j), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) == dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ | |
# permute t. | |
v(i, j, a, b)*t(a, b, i, j), | |
v(i, j, a, b)*t(b, a, i, j), | |
v(i, j, a, b)*t(a, b, j, i), | |
v(i, j, a, b)*t(b, a, j, i), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v and t. Relabelling of dummies should be equivalent. | |
v(i, j, a, b)*t(a, b, i, j), | |
v(j, i, a, b)*t(a, b, j, i), | |
v(i, j, b, a)*t(b, a, i, j), | |
v(j, i, b, a)*t(b, a, j, i), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_internal_external_VT2T2(): | |
ii, jj = symbols('i j', below_fermi=True) | |
aa, bb = symbols('a b', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
exprs = [ | |
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), | |
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), | |
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), | |
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ | |
v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), | |
v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), | |
v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), | |
v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ | |
v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), | |
v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), | |
v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), | |
v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_internal_external_pqrs(): | |
ii, jj = symbols('i j') | |
aa, bb = symbols('a b') | |
k, l = symbols('k l', cls=Dummy) | |
c, d = symbols('c d', cls=Dummy) | |
v = Function('v') | |
t = Function('t') | |
dums = _get_ordered_dummies | |
exprs = [ | |
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), | |
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), | |
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), | |
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert dums(exprs[0]) != dums(permut) | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_dummy_order_well_defined(): | |
aa, bb = symbols('a b', above_fermi=True) | |
k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
p, q = symbols('p q', cls=Dummy) | |
A = Function('A') | |
B = Function('B') | |
C = Function('C') | |
dums = _get_ordered_dummies | |
# We go through all key components in the order of increasing priority, | |
# and consider only fully orderable expressions. Non-orderable expressions | |
# are tested elsewhere. | |
# pos in first factor determines sort order | |
assert dums(A(k, l)*B(l, k)) == [k, l] | |
assert dums(A(l, k)*B(l, k)) == [l, k] | |
assert dums(A(k, l)*B(k, l)) == [k, l] | |
assert dums(A(l, k)*B(k, l)) == [l, k] | |
# factors involving the index | |
assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] | |
assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] | |
assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] | |
assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] | |
assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] | |
assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] | |
assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] | |
assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] | |
# same, but with factor order determined by non-dummies | |
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] | |
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] | |
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] | |
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] | |
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] | |
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] | |
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] | |
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] | |
# index range | |
assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] | |
assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] | |
assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] | |
assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] | |
assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] | |
assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] | |
assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] | |
assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] | |
assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] | |
assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] | |
assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] | |
assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] | |
def test_dummy_order_ambiguous(): | |
aa, bb = symbols('a b', above_fermi=True) | |
i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) | |
a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) | |
p, q = symbols('p q', cls=Dummy) | |
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) | |
p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) | |
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) | |
h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) | |
A = Function('A') | |
B = Function('B') | |
from sympy.utilities.iterables import variations | |
# A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest | |
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) | |
permutator = variations([a, b, c, d, e], 5) | |
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4, p5], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
# A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out | |
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) | |
permutator = variations([a, b, c, d, e], 5) | |
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4, p5], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
# A*A*A -- ordering of p5 and p4 is used to figure out the rest | |
template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) | |
permutator = variations([a, b, c, d, e], 5) | |
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4, p5], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
def atv(*args): | |
return AntiSymmetricTensor('v', args[:2], args[2:] ) | |
def att(*args): | |
if len(args) == 4: | |
return AntiSymmetricTensor('t', args[:2], args[2:] ) | |
elif len(args) == 2: | |
return AntiSymmetricTensor('t', (args[0],), (args[1],)) | |
def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): | |
ii = symbols('i', below_fermi=True) | |
aa = symbols('a', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
# Coupled-Cluster T1 terms with V*T1*T1*T1 | |
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} | |
exprs = [ | |
# permut v and t <=> swapping internal lines, equivalent | |
# irrespective of symmetries in v | |
atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), | |
atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), | |
atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), | |
atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): | |
ii, jj = symbols('i j', below_fermi=True) | |
aa, bb = symbols('a b', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1 | |
# non-equivalent substitutions (change of sign) | |
exprs = [ | |
# permut t <=> swapping external lines | |
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), | |
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), | |
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) | |
# equivalent substitutions | |
exprs = [ | |
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), | |
# permut t <=> swapping external lines | |
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_equivalent_internal_lines_VT1T1_AT(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
exprs = [ # permute v. Different dummy order. Not equivalent. | |
atv(i, j, a, b)*att(a, i)*att(b, j), | |
atv(j, i, a, b)*att(a, i)*att(b, j), | |
atv(i, j, b, a)*att(a, i)*att(b, j), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v. Different dummy order. Equivalent | |
atv(i, j, a, b)*att(a, i)*att(b, j), | |
atv(j, i, b, a)*att(a, i)*att(b, j), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ # permute t. Same dummy order, not equivalent. | |
atv(i, j, a, b)*att(a, i)*att(b, j), | |
atv(i, j, a, b)*att(b, i)*att(a, j), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v and t. Different dummy order, equivalent | |
atv(i, j, a, b)*att(a, i)*att(b, j), | |
atv(j, i, a, b)*att(a, j)*att(b, i), | |
atv(i, j, b, a)*att(b, i)*att(a, j), | |
atv(j, i, b, a)*att(b, j)*att(a, i), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_equivalent_internal_lines_VT2conjT2_AT(): | |
# this diagram requires special handling in TCE | |
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) | |
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) | |
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) | |
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) | |
from sympy.utilities.iterables import variations | |
# atv(abcd)att(abij)att(ijcd) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
# atv(abcd)att(abij)att(jicd) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): | |
# These diagrams invokes _determine_ambiguous() because the | |
# dummies can not be ordered unambiguously by the key alone | |
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) | |
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) | |
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) | |
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) | |
from sympy.utilities.iterables import variations | |
# atv(abcd)att(abij)att(cdij) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) | |
permutator = variations([a, b, c, d], 4) | |
base = template.subs(zip([p1, p2, p3, p4], next(permutator))) | |
for permut in permutator: | |
subslist = zip([p1, p2, p3, p4], permut) | |
expr = template.subs(subslist) | |
assert substitute_dummies(expr) == substitute_dummies(base) | |
def test_equivalent_internal_lines_VT2_AT(): | |
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) | |
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) | |
exprs = [ | |
# permute v. Same dummy order, not equivalent. | |
atv(i, j, a, b)*att(a, b, i, j), | |
atv(j, i, a, b)*att(a, b, i, j), | |
atv(i, j, b, a)*att(a, b, i, j), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ | |
# permute t. | |
atv(i, j, a, b)*att(a, b, i, j), | |
atv(i, j, a, b)*att(b, a, i, j), | |
atv(i, j, a, b)*att(a, b, j, i), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) != substitute_dummies(permut) | |
exprs = [ # permute v and t. Relabelling of dummies should be equivalent. | |
atv(i, j, a, b)*att(a, b, i, j), | |
atv(j, i, a, b)*att(a, b, j, i), | |
atv(i, j, b, a)*att(b, a, i, j), | |
atv(j, i, b, a)*att(b, a, j, i), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_internal_external_VT2T2_AT(): | |
ii, jj = symbols('i j', below_fermi=True) | |
aa, bb = symbols('a b', above_fermi=True) | |
k, l = symbols('k l', below_fermi=True, cls=Dummy) | |
c, d = symbols('c d', above_fermi=True, cls=Dummy) | |
exprs = [ | |
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), | |
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), | |
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), | |
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ | |
atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), | |
atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), | |
atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), | |
atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
exprs = [ | |
atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), | |
atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), | |
atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), | |
atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_internal_external_pqrs_AT(): | |
ii, jj = symbols('i j') | |
aa, bb = symbols('a b') | |
k, l = symbols('k l', cls=Dummy) | |
c, d = symbols('c d', cls=Dummy) | |
exprs = [ | |
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), | |
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), | |
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), | |
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), | |
] | |
for permut in exprs[1:]: | |
assert substitute_dummies(exprs[0]) == substitute_dummies(permut) | |
def test_issue_19661(): | |
a = Symbol('0') | |
assert latex(Commutator(Bd(a)**2, B(a)) | |
) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]' | |
def test_canonical_ordering_AntiSymmetricTensor(): | |
v = symbols("v") | |
c, d = symbols(('c','d'), above_fermi=True, | |
cls=Dummy) | |
k, l = symbols(('k','l'), below_fermi=True, | |
cls=Dummy) | |
# formerly, the left gave either the left or the right | |
assert AntiSymmetricTensor(v, (k, l), (d, c) | |
) == -AntiSymmetricTensor(v, (l, k), (d, c)) | |