Spaces:
Sleeping
Sleeping
File size: 48,450 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 |
from sympy.physics.secondquant import (
Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis,
matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta,
AnnihilateBoson, CreateBoson, BosonicOperator,
F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion,
evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks,
PermutationOperator, simplify_index_permutations,
_sort_anticommuting_fermions, _get_ordered_dummies,
substitute_dummies, FockStateBosonKet,
ContractionAppliesOnlyToFermions
)
from sympy.concrete.summations import Sum
from sympy.core.function import (Function, expand)
from sympy.core.numbers import (I, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.printing.repr import srepr
from sympy.simplify.simplify import simplify
from sympy.testing.pytest import slow, raises
from sympy.printing.latex import latex
def test_PermutationOperator():
p, q, r, s = symbols('p,q,r,s')
f, g, h, i = map(Function, 'fghi')
P = PermutationOperator
assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p)
assert P(p, q).get_permuted(f(p, q)) == -f(q, p)
assert P(p, q).get_permuted(f(p)) == f(p)
expr = (f(p)*g(q)*h(r)*i(s)
- f(q)*g(p)*h(r)*i(s)
- f(p)*g(q)*h(s)*i(r)
+ f(q)*g(p)*h(s)*i(r))
perms = [P(p, q), P(r, s)]
assert (simplify_index_permutations(expr, perms) ==
P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s))
assert latex(P(p, q)) == 'P(pq)'
def test_index_permutations_with_dummies():
a, b, c, d = symbols('a b c d')
p, q, r, s = symbols('p q r s', cls=Dummy)
f, g = map(Function, 'fg')
P = PermutationOperator
# No dummy substitution necessary
expr = f(a, b, p, q) - f(b, a, p, q)
assert simplify_index_permutations(
expr, [P(a, b)]) == P(a, b)*f(a, b, p, q)
# Cases where dummy substitution is needed
expected = P(a, b)*substitute_dummies(f(a, b, p, q))
expr = f(a, b, p, q) - f(b, a, q, p)
result = simplify_index_permutations(expr, [P(a, b)])
assert expected == substitute_dummies(result)
expr = f(a, b, q, p) - f(b, a, p, q)
result = simplify_index_permutations(expr, [P(a, b)])
assert expected == substitute_dummies(result)
# A case where nothing can be done
expr = f(a, b, q, p) - g(b, a, p, q)
result = simplify_index_permutations(expr, [P(a, b)])
assert expr == result
def test_dagger():
i, j, n, m = symbols('i,j,n,m')
assert Dagger(1) == 1
assert Dagger(1.0) == 1.0
assert Dagger(2*I) == -2*I
assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0
assert Dagger(BKet([n])) == BBra([n])
assert Dagger(B(0)) == Bd(0)
assert Dagger(Bd(0)) == B(0)
assert Dagger(B(n)) == Bd(n)
assert Dagger(Bd(n)) == B(n)
assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1)
assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute
assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n)
assert Dagger(B(n)**10) == Dagger(B(n))**10
assert Dagger('a') == Dagger(Symbol('a'))
assert Dagger(Dagger('a')) == Symbol('a')
def test_operator():
i, j = symbols('i,j')
o = BosonicOperator(i)
assert o.state == i
assert o.is_symbolic
o = BosonicOperator(1)
assert o.state == 1
assert not o.is_symbolic
def test_create():
i, j, n, m = symbols('i,j,n,m')
o = Bd(i)
assert latex(o) == "{b^\\dagger_{i}}"
assert isinstance(o, CreateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Bd(0)
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
o = Bd(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_annihilate():
i, j, n, m = symbols('i,j,n,m')
o = B(i)
assert latex(o) == "b_{i}"
assert isinstance(o, AnnihilateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = B(0)
assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1])
o = B(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_basic_state():
i, j, n, m = symbols('i,j,n,m')
s = BosonState([0, 1, 2, 3, 4])
assert len(s) == 5
assert s.args[0] == tuple(range(5))
assert s.up(0) == BosonState([1, 1, 2, 3, 4])
assert s.down(4) == BosonState([0, 1, 2, 3, 3])
for i in range(5):
assert s.up(i).down(i) == s
assert s.down(0) == 0
for i in range(5):
assert s[i] == i
s = BosonState([n, m])
assert s.down(0) == BosonState([n - 1, m])
assert s.up(0) == BosonState([n + 1, m])
def test_basic_apply():
n = symbols("n")
e = B(0)*BKet([n])
assert apply_operators(e) == sqrt(n)*BKet([n - 1])
e = Bd(0)*BKet([n])
assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1])
def test_complex_apply():
n, m = symbols("n,m")
o = Bd(0)*B(0)*Bd(1)*B(0)
e = apply_operators(o*BKet([n, m]))
answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m])
assert expand(e) == expand(answer)
def test_number_operator():
n = symbols("n")
o = Bd(0)*B(0)
e = apply_operators(o*BKet([n]))
assert e == n*BKet([n])
def test_inner_product():
i, j, k, l = symbols('i,j,k,l')
s1 = BBra([0])
s2 = BKet([1])
assert InnerProduct(s1, Dagger(s1)) == 1
assert InnerProduct(s1, s2) == 0
s1 = BBra([i, j])
s2 = BKet([k, l])
r = InnerProduct(s1, s2)
assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l)
def test_symbolic_matrix_elements():
n, m = symbols('n,m')
s1 = BBra([n])
s2 = BKet([m])
o = B(0)
e = apply_operators(s1*o*s2)
assert e == sqrt(m)*KroneckerDelta(n, m - 1)
def test_matrix_elements():
b = VarBosonicBasis(5)
o = B(0)
m = matrix_rep(o, b)
for i in range(4):
assert m[i, i + 1] == sqrt(i + 1)
o = Bd(0)
m = matrix_rep(o, b)
for i in range(4):
assert m[i + 1, i] == sqrt(i + 1)
def test_fixed_bosonic_basis():
b = FixedBosonicBasis(2, 2)
# assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
state = b.state(1)
assert state == FockStateBosonKet((1, 1))
assert b.index(state) == 1
assert b.state(1) == b[1]
assert len(b) == 3
assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]'
@slow
def test_sho():
n, m = symbols('n,m')
h_n = Bd(n)*B(n)*(n + S.Half)
H = Sum(h_n, (n, 0, 5))
o = H.doit(deep=False)
b = FixedBosonicBasis(2, 6)
m = matrix_rep(o, b)
# We need to double check these energy values to make sure that they
# are correct and have the proper degeneracies!
diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11]
for i in range(len(diag)):
assert diag[i] == m[i, i]
def test_commutation():
n, m = symbols("n,m", above_fermi=True)
c = Commutator(B(0), Bd(0))
assert c == 1
c = Commutator(Bd(0), B(0))
assert c == -1
c = Commutator(B(n), Bd(0))
assert c == KroneckerDelta(n, 0)
c = Commutator(B(0), B(0))
assert c == 0
c = Commutator(B(0), Bd(0))
e = simplify(apply_operators(c*BKet([n])))
assert e == BKet([n])
c = Commutator(B(0), B(1))
e = simplify(apply_operators(c*BKet([n, m])))
assert e == 0
c = Commutator(F(m), Fd(m))
assert c == +1 - 2*NO(Fd(m)*F(m))
c = Commutator(Fd(m), F(m))
assert c.expand() == -1 + 2*NO(Fd(m)*F(m))
C = Commutator
X, Y, Z = symbols('X,Y,Z', commutative=False)
assert C(C(X, Y), Z) != 0
assert C(C(X, Z), Y) != 0
assert C(Y, C(X, Z)) != 0
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
D = KroneckerDelta
assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a))
assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a)
assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0
c1 = Commutator(F(a), Fd(a))
assert Commutator.eval(c1, c1) == 0
c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]'
assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))'
assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]'
def test_create_f():
i, j, n, m = symbols('i,j,n,m')
o = Fd(i)
assert isinstance(o, CreateFermion)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Fd(1)
assert o.apply_operator(FKet([n])) == FKet([1, n])
assert o.apply_operator(FKet([n])) == -FKet([n, 1])
o = Fd(n)
assert o.apply_operator(FKet([])) == FKet([n])
vacuum = FKet([], fermi_level=4)
assert vacuum == FKet([], fermi_level=4)
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4)
assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4)
assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p)
assert repr(Fd(p)) == 'CreateFermion(p)'
assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))"
assert latex(Fd(p)) == r'{a^\dagger_{p}}'
def test_annihilate_f():
i, j, n, m = symbols('i,j,n,m')
o = F(i)
assert isinstance(o, AnnihilateFermion)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = F(1)
assert o.apply_operator(FKet([1, n])) == FKet([n])
assert o.apply_operator(FKet([n, 1])) == -FKet([n])
o = F(n)
assert o.apply_operator(FKet([n])) == FKet([])
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert F(i).apply_operator(FKet([i, j, k], 4)) == 0
assert F(a).apply_operator(FKet([i, b, k], 4)) == 0
assert F(l).apply_operator(FKet([i, j, k], 3)) == 0
assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4)
assert str(F(p)) == 'f(p)'
assert repr(F(p)) == 'AnnihilateFermion(p)'
assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))"
assert latex(F(p)) == 'a_{p}'
def test_create_b():
i, j, n, m = symbols('i,j,n,m')
o = Bd(i)
assert isinstance(o, CreateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = Bd(0)
assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1])
o = Bd(n)
assert o.apply_operator(BKet([n])) == o*BKet([n])
def test_annihilate_b():
i, j, n, m = symbols('i,j,n,m')
o = B(i)
assert isinstance(o, AnnihilateBoson)
o = o.subs(i, j)
assert o.atoms(Symbol) == {j}
o = B(0)
def test_wicks():
p, q, r, s = symbols('p,q,r,s', above_fermi=True)
# Testing for particles only
str = F(p)*Fd(q)
assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q)
str = Fd(p)*F(q)
assert wicks(str) == NO(Fd(p)*F(q))
str = F(p)*Fd(q)*F(r)*Fd(s)
nstr = wicks(str)
fasit = NO(
KroneckerDelta(p, q)*KroneckerDelta(r, s)
+ KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s)
+ KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q)
- KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q)
- AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s))
assert nstr == fasit
assert (p*q*nstr).expand() == wicks(p*q*str)
assert (nstr*p*q*2).expand() == wicks(str*p*q*2)
# Testing CC equations particles and holes
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) ==
NO(F(a)*F(i)*F(j)*Fd(b)) +
KroneckerDelta(a, b)*NO(F(i)*F(j)))
assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) ==
NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) -
KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k)))
expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l))
assert (expr ==
-KroneckerDelta(i, k)*NO(Fd(j)*F(l)) -
KroneckerDelta(j, l)*NO(Fd(i)*F(k)) -
KroneckerDelta(i, k)*KroneckerDelta(j, l) +
KroneckerDelta(i, l)*NO(Fd(j)*F(k)) +
NO(Fd(i)*Fd(j)*F(k)*F(l)))
expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d))
assert (expr ==
-KroneckerDelta(a, c)*NO(F(b)*Fd(d)) -
KroneckerDelta(b, d)*NO(F(a)*Fd(c)) -
KroneckerDelta(a, c)*KroneckerDelta(b, d) +
KroneckerDelta(a, d)*NO(F(b)*Fd(c)) +
NO(F(a)*F(b)*Fd(c)*Fd(d)))
def test_NO():
i, j, k, l = symbols('i j k l', below_fermi=True)
a, b, c, d = symbols('a b c d', above_fermi=True)
p, q, r, s = symbols('p q r s', cls=Dummy)
assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) ==
NO(Fd(p)*F(q)) + NO(Fd(a)*F(b)))
assert (NO(Fd(i)*NO(F(j)*Fd(a))) ==
NO(Fd(i)*F(j)*Fd(a)))
assert NO(1) == 1
assert NO(i) == i
assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) ==
NO(Fd(a)*Fd(b)*F(c)) +
NO(Fd(a)*Fd(b)*F(d)))
assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b)
assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i)
assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) ==
NO(Fd(a)*F(q)) + NO(Fd(i)*F(q)))
assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) ==
NO(Fd(p)*F(a)) + NO(Fd(p)*F(i)))
expr = NO(Fd(p)*F(q))._remove_brackets()
assert wicks(expr) == NO(expr)
assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a))
no = NO(Fd(a)*F(i)*F(b)*Fd(j))
l1 = list(no.iter_q_creators())
assert l1 == [0, 1]
l2 = list(no.iter_q_annihilators())
assert l2 == [3, 2]
no = NO(Fd(a)*Fd(i))
assert no.has_q_creators == 1
assert no.has_q_annihilators == -1
assert str(no) == ':CreateFermion(a)*CreateFermion(i):'
assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))'
assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}'
raises(NotImplementedError, lambda: NO(Bd(p)*F(q)))
def test_sorting():
i, j = symbols('i,j', below_fermi=True)
a, b = symbols('a,b', above_fermi=True)
p, q = symbols('p,q')
# p, q
assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0)
assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1)
# i, p
assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1)
assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1)
assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1)
assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0)
assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1)
assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0)
# a, p
assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1)
assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0)
assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1)
assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0)
assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0)
assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1)
assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0)
assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1)
# i, a
assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0)
assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1)
assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0)
assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1)
assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1)
assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0)
def test_contraction():
i, j, k, l = symbols('i,j,k,l', below_fermi=True)
a, b, c, d = symbols('a,b,c,d', above_fermi=True)
p, q, r, s = symbols('p,q,r,s')
assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j)
assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b)
assert contraction(F(a), Fd(i)) == 0
assert contraction(Fd(a), F(i)) == 0
assert contraction(F(i), Fd(a)) == 0
assert contraction(Fd(i), F(a)) == 0
assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p)
restr = evaluate_deltas(contraction(Fd(p), F(q)))
assert restr.is_only_below_fermi
restr = evaluate_deltas(contraction(F(p), Fd(q)))
assert restr.is_only_above_fermi
raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b)))
def test_evaluate_deltas():
i, j, k = symbols('i,j,k')
r = KroneckerDelta(i, j) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(i, k)
r = KroneckerDelta(i, 0) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k)
r = KroneckerDelta(1, j) * KroneckerDelta(j, k)
assert evaluate_deltas(r) == KroneckerDelta(1, k)
r = KroneckerDelta(j, 2) * KroneckerDelta(k, j)
assert evaluate_deltas(r) == KroneckerDelta(2, k)
r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1)
assert evaluate_deltas(r) == 0
r = (KroneckerDelta(0, i) * KroneckerDelta(0, j)
* KroneckerDelta(1, j) * KroneckerDelta(1, j))
assert evaluate_deltas(r) == 0
def test_Tensors():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
p, q, r, s = symbols('p q r s')
AT = AntiSymmetricTensor
assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j))
assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i))
assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i))
assert AT('t', (a, a), (i, j)) == 0
assert AT('t', (a, b), (i, i)) == 0
assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j))
assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j))
tabij = AT('t', (a, b), (i, j))
assert tabij.has(a)
assert tabij.has(b)
assert tabij.has(i)
assert tabij.has(j)
assert tabij.subs(b, c) == AT('t', (a, c), (i, j))
assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j))
assert tabij.symbol == Symbol('t')
assert latex(tabij) == '{t^{ab}_{ij}}'
assert str(tabij) == 't((_a, _b),(_i, _j))'
assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j))
assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j))
def test_fully_contracted():
i, j, k, l = symbols('i j k l', below_fermi=True)
a, b, c, d = symbols('a b c d', above_fermi=True)
p, q, r, s = symbols('p q r s', cls=Dummy)
Fock = (AntiSymmetricTensor('f', (p,), (q,))*
NO(Fd(p)*F(q)))
V = (AntiSymmetricTensor('v', (p, q), (r, s))*
NO(Fd(p)*Fd(q)*F(s)*F(r)))/4
Fai = wicks(NO(Fd(i)*F(a))*Fock,
keep_only_fully_contracted=True,
simplify_kronecker_deltas=True)
assert Fai == AntiSymmetricTensor('f', (a,), (i,))
Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V,
keep_only_fully_contracted=True,
simplify_kronecker_deltas=True)
assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j))
def test_substitute_dummies_without_dummies():
i, j = symbols('i,j')
assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2
assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1
def test_substitute_dummies_NO_operator():
i, j = symbols('i j', cls=Dummy)
assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j))
- att(j, i)*NO(Fd(j)*F(i))) == 0
def test_substitute_dummies_SQ_operator():
i, j = symbols('i j', cls=Dummy)
assert substitute_dummies(att(i, j)*Fd(i)*F(j)
- att(j, i)*Fd(j)*F(i)) == 0
def test_substitute_dummies_new_indices():
i, j = symbols('i j', below_fermi=True, cls=Dummy)
a, b = symbols('a b', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
f = Function('f')
assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0
def test_substitute_dummies_substitution_order():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
f = Function('f')
from sympy.utilities.iterables import variations
for permut in variations([i, j, k, l], 4):
assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0
def test_dummy_order_inner_outer_lines_VT1T1T1():
ii = symbols('i', below_fermi=True)
aa = symbols('a', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# Coupled-Cluster T1 terms with V*T1*T1*T1
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
exprs = [
# permut v and t <=> swapping internal lines, equivalent
# irrespective of symmetries in v
v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k),
v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l),
v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k),
v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_inner_outer_lines_VT1T1T1T1():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
exprs = [
# permut t <=> swapping external lines, not equivalent
# except if v has certain symmetries.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permut v <=> swapping external lines, not equivalent
# except if v has certain symmetries.
#
# Note that in contrast to above, these permutations have identical
# dummy order. That is because the proximity to external indices
# has higher influence on the canonical dummy ordering than the
# position of a dummy on the factors. In fact, the terms here are
# similar in structure as the result of the dummy substitutions above.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permut t and v <=> swapping internal lines, equivalent.
# Canonical dummy order is different, and a consistent
# substitution reveals the equivalence.
v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l),
v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l),
v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l),
v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_get_subNO():
p, q, r = symbols('p,q,r')
assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r))
assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r))
assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q))
def test_equivalent_internal_lines_VT1T1():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [ # permute v. Different dummy order. Not equivalent.
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, a, b)*t(a, i)*t(b, j),
v(i, j, b, a)*t(a, i)*t(b, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v. Different dummy order. Equivalent
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, b, a)*t(a, i)*t(b, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [ # permute t. Same dummy order, not equivalent.
v(i, j, a, b)*t(a, i)*t(b, j),
v(i, j, a, b)*t(b, i)*t(a, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Different dummy order, equivalent
v(i, j, a, b)*t(a, i)*t(b, j),
v(j, i, a, b)*t(a, j)*t(b, i),
v(i, j, b, a)*t(b, i)*t(a, j),
v(j, i, b, a)*t(b, j)*t(a, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT2conjT2():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(ijcd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
# v(abcd)t(abij)t(jicd)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
# v(abcd)t(abij)t(cdij)
template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert dums(base) != dums(expr)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
# permute v. Same dummy order, not equivalent.
#
# This test show that the dummy order may not be sensitive to all
# index permutations. The following expressions have identical
# structure as the resulting terms from of the dummy substitutions
# in the test above. Here, all expressions have the same dummy
# order, so they cannot be simplified by means of dummy
# substitution. In order to simplify further, it is necessary to
# exploit symmetries in the objects, for instance if t or v is
# antisymmetric.
v(i, j, a, b)*t(a, b, i, j),
v(j, i, a, b)*t(a, b, i, j),
v(i, j, b, a)*t(a, b, i, j),
v(j, i, b, a)*t(a, b, i, j),
]
for permut in exprs[1:]:
assert dums(exprs[0]) == dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permute t.
v(i, j, a, b)*t(a, b, i, j),
v(i, j, a, b)*t(b, a, i, j),
v(i, j, a, b)*t(a, b, j, i),
v(i, j, a, b)*t(b, a, j, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
v(i, j, a, b)*t(a, b, i, j),
v(j, i, a, b)*t(a, b, j, i),
v(i, j, b, a)*t(b, a, i, j),
v(j, i, b, a)*t(b, a, j, i),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_VT2T2():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_pqrs():
ii, jj = symbols('i j')
aa, bb = symbols('a b')
k, l = symbols('k l', cls=Dummy)
c, d = symbols('c d', cls=Dummy)
v = Function('v')
t = Function('t')
dums = _get_ordered_dummies
exprs = [
v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l),
v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k),
v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l),
v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k),
]
for permut in exprs[1:]:
assert dums(exprs[0]) != dums(permut)
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_well_defined():
aa, bb = symbols('a b', above_fermi=True)
k, l, m = symbols('k l m', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
A = Function('A')
B = Function('B')
C = Function('C')
dums = _get_ordered_dummies
# We go through all key components in the order of increasing priority,
# and consider only fully orderable expressions. Non-orderable expressions
# are tested elsewhere.
# pos in first factor determines sort order
assert dums(A(k, l)*B(l, k)) == [k, l]
assert dums(A(l, k)*B(l, k)) == [l, k]
assert dums(A(k, l)*B(k, l)) == [k, l]
assert dums(A(l, k)*B(k, l)) == [l, k]
# factors involving the index
assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m]
assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m]
assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m]
assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m]
assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m]
assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m]
assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m]
assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m]
# same, but with factor order determined by non-dummies
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m]
assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m]
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m]
assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m]
# index range
assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p]
assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p]
assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p]
assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p]
assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p]
assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p]
assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p]
assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p]
assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p]
assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p]
assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p]
assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p]
def test_dummy_order_ambiguous():
aa, bb = symbols('a b', above_fermi=True)
i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy)
a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy)
p, q = symbols('p q', cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy)
A = Function('A')
B = Function('B')
from sympy.utilities.iterables import variations
# A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out
template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# A*A*A -- ordering of p5 and p4 is used to figure out the rest
template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4)
permutator = variations([a, b, c, d, e], 5)
base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4, p5], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def atv(*args):
return AntiSymmetricTensor('v', args[:2], args[2:] )
def att(*args):
if len(args) == 4:
return AntiSymmetricTensor('t', args[:2], args[2:] )
elif len(args) == 2:
return AntiSymmetricTensor('t', (args[0],), (args[1],))
def test_dummy_order_inner_outer_lines_VT1T1T1_AT():
ii = symbols('i', below_fermi=True)
aa = symbols('a', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
# Coupled-Cluster T1 terms with V*T1*T1*T1
# t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc}
exprs = [
# permut v and t <=> swapping internal lines, equivalent
# irrespective of symmetries in v
atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k),
atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l),
atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k),
atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
# Coupled-Cluster T2 terms with V*T1*T1*T1*T1
# non-equivalent substitutions (change of sign)
exprs = [
# permut t <=> swapping external lines
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l),
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == -substitute_dummies(permut)
# equivalent substitutions
exprs = [
atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l),
# permut t <=> swapping external lines
atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT1T1_AT():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
exprs = [ # permute v. Different dummy order. Not equivalent.
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, a, b)*att(a, i)*att(b, j),
atv(i, j, b, a)*att(a, i)*att(b, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v. Different dummy order. Equivalent
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, b, a)*att(a, i)*att(b, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [ # permute t. Same dummy order, not equivalent.
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(i, j, a, b)*att(b, i)*att(a, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Different dummy order, equivalent
atv(i, j, a, b)*att(a, i)*att(b, j),
atv(j, i, a, b)*att(a, j)*att(b, i),
atv(i, j, b, a)*att(b, i)*att(a, j),
atv(j, i, b, a)*att(b, j)*att(a, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_equivalent_internal_lines_VT2conjT2_AT():
# this diagram requires special handling in TCE
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(ijcd)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
# atv(abcd)att(abij)att(jicd)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT():
# These diagrams invokes _determine_ambiguous() because the
# dummies can not be ordered unambiguously by the key alone
i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy)
a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy)
p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy)
h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy)
from sympy.utilities.iterables import variations
# atv(abcd)att(abij)att(cdij)
template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j)
permutator = variations([a, b, c, d], 4)
base = template.subs(zip([p1, p2, p3, p4], next(permutator)))
for permut in permutator:
subslist = zip([p1, p2, p3, p4], permut)
expr = template.subs(subslist)
assert substitute_dummies(expr) == substitute_dummies(base)
def test_equivalent_internal_lines_VT2_AT():
i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy)
a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy)
exprs = [
# permute v. Same dummy order, not equivalent.
atv(i, j, a, b)*att(a, b, i, j),
atv(j, i, a, b)*att(a, b, i, j),
atv(i, j, b, a)*att(a, b, i, j),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [
# permute t.
atv(i, j, a, b)*att(a, b, i, j),
atv(i, j, a, b)*att(b, a, i, j),
atv(i, j, a, b)*att(a, b, j, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) != substitute_dummies(permut)
exprs = [ # permute v and t. Relabelling of dummies should be equivalent.
atv(i, j, a, b)*att(a, b, i, j),
atv(j, i, a, b)*att(a, b, j, i),
atv(i, j, b, a)*att(b, a, i, j),
atv(j, i, b, a)*att(b, a, j, i),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_VT2T2_AT():
ii, jj = symbols('i j', below_fermi=True)
aa, bb = symbols('a b', above_fermi=True)
k, l = symbols('k l', below_fermi=True, cls=Dummy)
c, d = symbols('c d', above_fermi=True, cls=Dummy)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
exprs = [
atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_internal_external_pqrs_AT():
ii, jj = symbols('i j')
aa, bb = symbols('a b')
k, l = symbols('k l', cls=Dummy)
c, d = symbols('c d', cls=Dummy)
exprs = [
atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l),
atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k),
atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l),
atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k),
]
for permut in exprs[1:]:
assert substitute_dummies(exprs[0]) == substitute_dummies(permut)
def test_issue_19661():
a = Symbol('0')
assert latex(Commutator(Bd(a)**2, B(a))
) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]'
def test_canonical_ordering_AntiSymmetricTensor():
v = symbols("v")
c, d = symbols(('c','d'), above_fermi=True,
cls=Dummy)
k, l = symbols(('k','l'), below_fermi=True,
cls=Dummy)
# formerly, the left gave either the left or the right
assert AntiSymmetricTensor(v, (k, l), (d, c)
) == -AntiSymmetricTensor(v, (l, k), (d, c))
|