Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
"""This module contains some sample symbolic models used for testing and | |
examples.""" | |
# Internal imports | |
from sympy.core import backend as sm | |
import sympy.physics.mechanics as me | |
def multi_mass_spring_damper(n=1, apply_gravity=False, | |
apply_external_forces=False): | |
r"""Returns a system containing the symbolic equations of motion and | |
associated variables for a simple multi-degree of freedom point mass, | |
spring, damper system with optional gravitational and external | |
specified forces. For example, a two mass system under the influence of | |
gravity and external forces looks like: | |
:: | |
---------------- | |
| | | | g | |
\ | | | V | |
k0 / --- c0 | | |
| | | x0, v0 | |
--------- V | |
| m0 | ----- | |
--------- | | |
| | | | | |
\ v | | | | |
k1 / f0 --- c1 | | |
| | | x1, v1 | |
--------- V | |
| m1 | ----- | |
--------- | |
| f1 | |
V | |
Parameters | |
========== | |
n : integer | |
The number of masses in the serial chain. | |
apply_gravity : boolean | |
If true, gravity will be applied to each mass. | |
apply_external_forces : boolean | |
If true, a time varying external force will be applied to each mass. | |
Returns | |
======= | |
kane : sympy.physics.mechanics.kane.KanesMethod | |
A KanesMethod object. | |
""" | |
mass = sm.symbols('m:{}'.format(n)) | |
stiffness = sm.symbols('k:{}'.format(n)) | |
damping = sm.symbols('c:{}'.format(n)) | |
acceleration_due_to_gravity = sm.symbols('g') | |
coordinates = me.dynamicsymbols('x:{}'.format(n)) | |
speeds = me.dynamicsymbols('v:{}'.format(n)) | |
specifieds = me.dynamicsymbols('f:{}'.format(n)) | |
ceiling = me.ReferenceFrame('N') | |
origin = me.Point('origin') | |
origin.set_vel(ceiling, 0) | |
points = [origin] | |
kinematic_equations = [] | |
particles = [] | |
forces = [] | |
for i in range(n): | |
center = points[-1].locatenew('center{}'.format(i), | |
coordinates[i] * ceiling.x) | |
center.set_vel(ceiling, points[-1].vel(ceiling) + | |
speeds[i] * ceiling.x) | |
points.append(center) | |
block = me.Particle('block{}'.format(i), center, mass[i]) | |
kinematic_equations.append(speeds[i] - coordinates[i].diff()) | |
total_force = (-stiffness[i] * coordinates[i] - | |
damping[i] * speeds[i]) | |
try: | |
total_force += (stiffness[i + 1] * coordinates[i + 1] + | |
damping[i + 1] * speeds[i + 1]) | |
except IndexError: # no force from below on last mass | |
pass | |
if apply_gravity: | |
total_force += mass[i] * acceleration_due_to_gravity | |
if apply_external_forces: | |
total_force += specifieds[i] | |
forces.append((center, total_force * ceiling.x)) | |
particles.append(block) | |
kane = me.KanesMethod(ceiling, q_ind=coordinates, u_ind=speeds, | |
kd_eqs=kinematic_equations) | |
kane.kanes_equations(particles, forces) | |
return kane | |
def n_link_pendulum_on_cart(n=1, cart_force=True, joint_torques=False): | |
r"""Returns the system containing the symbolic first order equations of | |
motion for a 2D n-link pendulum on a sliding cart under the influence of | |
gravity. | |
:: | |
| | |
o y v | |
\ 0 ^ g | |
\ | | |
--\-|---- | |
| \| | | |
F-> | o --|---> x | |
| | | |
--------- | |
o o | |
Parameters | |
========== | |
n : integer | |
The number of links in the pendulum. | |
cart_force : boolean, default=True | |
If true an external specified lateral force is applied to the cart. | |
joint_torques : boolean, default=False | |
If true joint torques will be added as specified inputs at each | |
joint. | |
Returns | |
======= | |
kane : sympy.physics.mechanics.kane.KanesMethod | |
A KanesMethod object. | |
Notes | |
===== | |
The degrees of freedom of the system are n + 1, i.e. one for each | |
pendulum link and one for the lateral motion of the cart. | |
M x' = F, where x = [u0, ..., un+1, q0, ..., qn+1] | |
The joint angles are all defined relative to the ground where the x axis | |
defines the ground line and the y axis points up. The joint torques are | |
applied between each adjacent link and the between the cart and the | |
lower link where a positive torque corresponds to positive angle. | |
""" | |
if n <= 0: | |
raise ValueError('The number of links must be a positive integer.') | |
q = me.dynamicsymbols('q:{}'.format(n + 1)) | |
u = me.dynamicsymbols('u:{}'.format(n + 1)) | |
if joint_torques is True: | |
T = me.dynamicsymbols('T1:{}'.format(n + 1)) | |
m = sm.symbols('m:{}'.format(n + 1)) | |
l = sm.symbols('l:{}'.format(n)) | |
g, t = sm.symbols('g t') | |
I = me.ReferenceFrame('I') | |
O = me.Point('O') | |
O.set_vel(I, 0) | |
P0 = me.Point('P0') | |
P0.set_pos(O, q[0] * I.x) | |
P0.set_vel(I, u[0] * I.x) | |
Pa0 = me.Particle('Pa0', P0, m[0]) | |
frames = [I] | |
points = [P0] | |
particles = [Pa0] | |
forces = [(P0, -m[0] * g * I.y)] | |
kindiffs = [q[0].diff(t) - u[0]] | |
if cart_force is True or joint_torques is True: | |
specified = [] | |
else: | |
specified = None | |
for i in range(n): | |
Bi = I.orientnew('B{}'.format(i), 'Axis', [q[i + 1], I.z]) | |
Bi.set_ang_vel(I, u[i + 1] * I.z) | |
frames.append(Bi) | |
Pi = points[-1].locatenew('P{}'.format(i + 1), l[i] * Bi.y) | |
Pi.v2pt_theory(points[-1], I, Bi) | |
points.append(Pi) | |
Pai = me.Particle('Pa' + str(i + 1), Pi, m[i + 1]) | |
particles.append(Pai) | |
forces.append((Pi, -m[i + 1] * g * I.y)) | |
if joint_torques is True: | |
specified.append(T[i]) | |
if i == 0: | |
forces.append((I, -T[i] * I.z)) | |
if i == n - 1: | |
forces.append((Bi, T[i] * I.z)) | |
else: | |
forces.append((Bi, T[i] * I.z - T[i + 1] * I.z)) | |
kindiffs.append(q[i + 1].diff(t) - u[i + 1]) | |
if cart_force is True: | |
F = me.dynamicsymbols('F') | |
forces.append((P0, F * I.x)) | |
specified.append(F) | |
kane = me.KanesMethod(I, q_ind=q, u_ind=u, kd_eqs=kindiffs) | |
kane.kanes_equations(particles, forces) | |
return kane | |