Spaces:
Sleeping
Sleeping
File size: 6,463 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
#!/usr/bin/env python
"""This module contains some sample symbolic models used for testing and
examples."""
# Internal imports
from sympy.core import backend as sm
import sympy.physics.mechanics as me
def multi_mass_spring_damper(n=1, apply_gravity=False,
apply_external_forces=False):
r"""Returns a system containing the symbolic equations of motion and
associated variables for a simple multi-degree of freedom point mass,
spring, damper system with optional gravitational and external
specified forces. For example, a two mass system under the influence of
gravity and external forces looks like:
::
----------------
| | | | g
\ | | | V
k0 / --- c0 |
| | | x0, v0
--------- V
| m0 | -----
--------- |
| | | |
\ v | | |
k1 / f0 --- c1 |
| | | x1, v1
--------- V
| m1 | -----
---------
| f1
V
Parameters
==========
n : integer
The number of masses in the serial chain.
apply_gravity : boolean
If true, gravity will be applied to each mass.
apply_external_forces : boolean
If true, a time varying external force will be applied to each mass.
Returns
=======
kane : sympy.physics.mechanics.kane.KanesMethod
A KanesMethod object.
"""
mass = sm.symbols('m:{}'.format(n))
stiffness = sm.symbols('k:{}'.format(n))
damping = sm.symbols('c:{}'.format(n))
acceleration_due_to_gravity = sm.symbols('g')
coordinates = me.dynamicsymbols('x:{}'.format(n))
speeds = me.dynamicsymbols('v:{}'.format(n))
specifieds = me.dynamicsymbols('f:{}'.format(n))
ceiling = me.ReferenceFrame('N')
origin = me.Point('origin')
origin.set_vel(ceiling, 0)
points = [origin]
kinematic_equations = []
particles = []
forces = []
for i in range(n):
center = points[-1].locatenew('center{}'.format(i),
coordinates[i] * ceiling.x)
center.set_vel(ceiling, points[-1].vel(ceiling) +
speeds[i] * ceiling.x)
points.append(center)
block = me.Particle('block{}'.format(i), center, mass[i])
kinematic_equations.append(speeds[i] - coordinates[i].diff())
total_force = (-stiffness[i] * coordinates[i] -
damping[i] * speeds[i])
try:
total_force += (stiffness[i + 1] * coordinates[i + 1] +
damping[i + 1] * speeds[i + 1])
except IndexError: # no force from below on last mass
pass
if apply_gravity:
total_force += mass[i] * acceleration_due_to_gravity
if apply_external_forces:
total_force += specifieds[i]
forces.append((center, total_force * ceiling.x))
particles.append(block)
kane = me.KanesMethod(ceiling, q_ind=coordinates, u_ind=speeds,
kd_eqs=kinematic_equations)
kane.kanes_equations(particles, forces)
return kane
def n_link_pendulum_on_cart(n=1, cart_force=True, joint_torques=False):
r"""Returns the system containing the symbolic first order equations of
motion for a 2D n-link pendulum on a sliding cart under the influence of
gravity.
::
|
o y v
\ 0 ^ g
\ |
--\-|----
| \| |
F-> | o --|---> x
| |
---------
o o
Parameters
==========
n : integer
The number of links in the pendulum.
cart_force : boolean, default=True
If true an external specified lateral force is applied to the cart.
joint_torques : boolean, default=False
If true joint torques will be added as specified inputs at each
joint.
Returns
=======
kane : sympy.physics.mechanics.kane.KanesMethod
A KanesMethod object.
Notes
=====
The degrees of freedom of the system are n + 1, i.e. one for each
pendulum link and one for the lateral motion of the cart.
M x' = F, where x = [u0, ..., un+1, q0, ..., qn+1]
The joint angles are all defined relative to the ground where the x axis
defines the ground line and the y axis points up. The joint torques are
applied between each adjacent link and the between the cart and the
lower link where a positive torque corresponds to positive angle.
"""
if n <= 0:
raise ValueError('The number of links must be a positive integer.')
q = me.dynamicsymbols('q:{}'.format(n + 1))
u = me.dynamicsymbols('u:{}'.format(n + 1))
if joint_torques is True:
T = me.dynamicsymbols('T1:{}'.format(n + 1))
m = sm.symbols('m:{}'.format(n + 1))
l = sm.symbols('l:{}'.format(n))
g, t = sm.symbols('g t')
I = me.ReferenceFrame('I')
O = me.Point('O')
O.set_vel(I, 0)
P0 = me.Point('P0')
P0.set_pos(O, q[0] * I.x)
P0.set_vel(I, u[0] * I.x)
Pa0 = me.Particle('Pa0', P0, m[0])
frames = [I]
points = [P0]
particles = [Pa0]
forces = [(P0, -m[0] * g * I.y)]
kindiffs = [q[0].diff(t) - u[0]]
if cart_force is True or joint_torques is True:
specified = []
else:
specified = None
for i in range(n):
Bi = I.orientnew('B{}'.format(i), 'Axis', [q[i + 1], I.z])
Bi.set_ang_vel(I, u[i + 1] * I.z)
frames.append(Bi)
Pi = points[-1].locatenew('P{}'.format(i + 1), l[i] * Bi.y)
Pi.v2pt_theory(points[-1], I, Bi)
points.append(Pi)
Pai = me.Particle('Pa' + str(i + 1), Pi, m[i + 1])
particles.append(Pai)
forces.append((Pi, -m[i + 1] * g * I.y))
if joint_torques is True:
specified.append(T[i])
if i == 0:
forces.append((I, -T[i] * I.z))
if i == n - 1:
forces.append((Bi, T[i] * I.z))
else:
forces.append((Bi, T[i] * I.z - T[i + 1] * I.z))
kindiffs.append(q[i + 1].diff(t) - u[i + 1])
if cart_force is True:
F = me.dynamicsymbols('F')
forces.append((P0, F * I.x))
specified.append(F)
kane = me.KanesMethod(I, q_ind=q, u_ind=u, kd_eqs=kindiffs)
kane.kanes_equations(particles, forces)
return kane
|