Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
6.15 kB
from sympy import sympify
from sympy.physics.vector import Point, Dyadic, ReferenceFrame, outer
from collections import namedtuple
__all__ = ['inertia', 'inertia_of_point_mass', 'Inertia']
def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0):
"""Simple way to create inertia Dyadic object.
Explanation
===========
Creates an inertia Dyadic based on the given tensor values and a body-fixed
reference frame.
Parameters
==========
frame : ReferenceFrame
The frame the inertia is defined in.
ixx : Sympifyable
The xx element in the inertia dyadic.
iyy : Sympifyable
The yy element in the inertia dyadic.
izz : Sympifyable
The zz element in the inertia dyadic.
ixy : Sympifyable
The xy element in the inertia dyadic.
iyz : Sympifyable
The yz element in the inertia dyadic.
izx : Sympifyable
The zx element in the inertia dyadic.
Examples
========
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
>>> N = ReferenceFrame('N')
>>> inertia(N, 1, 2, 3)
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Need to define the inertia in a frame')
ixx, iyy, izz = sympify(ixx), sympify(iyy), sympify(izz)
ixy, iyz, izx = sympify(ixy), sympify(iyz), sympify(izx)
return (ixx*outer(frame.x, frame.x) + ixy*outer(frame.x, frame.y) +
izx*outer(frame.x, frame.z) + ixy*outer(frame.y, frame.x) +
iyy*outer(frame.y, frame.y) + iyz*outer(frame.y, frame.z) +
izx*outer(frame.z, frame.x) + iyz*outer(frame.z, frame.y) +
izz*outer(frame.z, frame.z))
def inertia_of_point_mass(mass, pos_vec, frame):
"""Inertia dyadic of a point mass relative to point O.
Parameters
==========
mass : Sympifyable
Mass of the point mass
pos_vec : Vector
Position from point O to point mass
frame : ReferenceFrame
Reference frame to express the dyadic in
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
>>> N = ReferenceFrame('N')
>>> r, m = symbols('r m')
>>> px = r * N.x
>>> inertia_of_point_mass(m, px, N)
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
"""
return mass*(
(outer(frame.x, frame.x) +
outer(frame.y, frame.y) +
outer(frame.z, frame.z)) *
(pos_vec.dot(pos_vec)) - outer(pos_vec, pos_vec))
class Inertia(namedtuple('Inertia', ['dyadic', 'point'])):
"""Inertia object consisting of a Dyadic and a Point of reference.
Explanation
===========
This is a simple class to store the Point and Dyadic, belonging to an
inertia.
Attributes
==========
dyadic : Dyadic
The dyadic of the inertia.
point : Point
The reference point of the inertia.
Examples
========
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Inertia
>>> N = ReferenceFrame('N')
>>> Po = Point('Po')
>>> Inertia(N.x.outer(N.x) + N.y.outer(N.y) + N.z.outer(N.z), Po)
((N.x|N.x) + (N.y|N.y) + (N.z|N.z), Po)
In the example above the Dyadic was created manually, one can however also
use the ``inertia`` function for this or the class method ``from_tensor`` as
shown below.
>>> Inertia.from_inertia_scalars(Po, N, 1, 1, 1)
((N.x|N.x) + (N.y|N.y) + (N.z|N.z), Po)
"""
def __new__(cls, dyadic, point):
# Switch order if given in the wrong order
if isinstance(dyadic, Point) and isinstance(point, Dyadic):
point, dyadic = dyadic, point
if not isinstance(point, Point):
raise TypeError('Reference point should be of type Point')
if not isinstance(dyadic, Dyadic):
raise TypeError('Inertia value should be expressed as a Dyadic')
return super().__new__(cls, dyadic, point)
@classmethod
def from_inertia_scalars(cls, point, frame, ixx, iyy, izz, ixy=0, iyz=0,
izx=0):
"""Simple way to create an Inertia object based on the tensor values.
Explanation
===========
This class method uses the :func`~.inertia` to create the Dyadic based
on the tensor values.
Parameters
==========
point : Point
The reference point of the inertia.
frame : ReferenceFrame
The frame the inertia is defined in.
ixx : Sympifyable
The xx element in the inertia dyadic.
iyy : Sympifyable
The yy element in the inertia dyadic.
izz : Sympifyable
The zz element in the inertia dyadic.
ixy : Sympifyable
The xy element in the inertia dyadic.
iyz : Sympifyable
The yz element in the inertia dyadic.
izx : Sympifyable
The zx element in the inertia dyadic.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Inertia
>>> ixx, iyy, izz, ixy, iyz, izx = symbols('ixx iyy izz ixy iyz izx')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> I = Inertia.from_inertia_scalars(P, N, ixx, iyy, izz, ixy, iyz, izx)
The tensor values can easily be seen when converting the dyadic to a
matrix.
>>> I.dyadic.to_matrix(N)
Matrix([
[ixx, ixy, izx],
[ixy, iyy, iyz],
[izx, iyz, izz]])
"""
return cls(inertia(frame, ixx, iyy, izz, ixy, iyz, izx), point)
def __add__(self, other):
raise TypeError(f"unsupported operand type(s) for +: "
f"'{self.__class__.__name__}' and "
f"'{other.__class__.__name__}'")
def __mul__(self, other):
raise TypeError(f"unsupported operand type(s) for *: "
f"'{self.__class__.__name__}' and "
f"'{other.__class__.__name__}'")
__radd__ = __add__
__rmul__ = __mul__