Spaces:
Sleeping
Sleeping
File size: 6,152 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
from sympy import sympify
from sympy.physics.vector import Point, Dyadic, ReferenceFrame, outer
from collections import namedtuple
__all__ = ['inertia', 'inertia_of_point_mass', 'Inertia']
def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0):
"""Simple way to create inertia Dyadic object.
Explanation
===========
Creates an inertia Dyadic based on the given tensor values and a body-fixed
reference frame.
Parameters
==========
frame : ReferenceFrame
The frame the inertia is defined in.
ixx : Sympifyable
The xx element in the inertia dyadic.
iyy : Sympifyable
The yy element in the inertia dyadic.
izz : Sympifyable
The zz element in the inertia dyadic.
ixy : Sympifyable
The xy element in the inertia dyadic.
iyz : Sympifyable
The yz element in the inertia dyadic.
izx : Sympifyable
The zx element in the inertia dyadic.
Examples
========
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
>>> N = ReferenceFrame('N')
>>> inertia(N, 1, 2, 3)
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Need to define the inertia in a frame')
ixx, iyy, izz = sympify(ixx), sympify(iyy), sympify(izz)
ixy, iyz, izx = sympify(ixy), sympify(iyz), sympify(izx)
return (ixx*outer(frame.x, frame.x) + ixy*outer(frame.x, frame.y) +
izx*outer(frame.x, frame.z) + ixy*outer(frame.y, frame.x) +
iyy*outer(frame.y, frame.y) + iyz*outer(frame.y, frame.z) +
izx*outer(frame.z, frame.x) + iyz*outer(frame.z, frame.y) +
izz*outer(frame.z, frame.z))
def inertia_of_point_mass(mass, pos_vec, frame):
"""Inertia dyadic of a point mass relative to point O.
Parameters
==========
mass : Sympifyable
Mass of the point mass
pos_vec : Vector
Position from point O to point mass
frame : ReferenceFrame
Reference frame to express the dyadic in
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
>>> N = ReferenceFrame('N')
>>> r, m = symbols('r m')
>>> px = r * N.x
>>> inertia_of_point_mass(m, px, N)
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
"""
return mass*(
(outer(frame.x, frame.x) +
outer(frame.y, frame.y) +
outer(frame.z, frame.z)) *
(pos_vec.dot(pos_vec)) - outer(pos_vec, pos_vec))
class Inertia(namedtuple('Inertia', ['dyadic', 'point'])):
"""Inertia object consisting of a Dyadic and a Point of reference.
Explanation
===========
This is a simple class to store the Point and Dyadic, belonging to an
inertia.
Attributes
==========
dyadic : Dyadic
The dyadic of the inertia.
point : Point
The reference point of the inertia.
Examples
========
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Inertia
>>> N = ReferenceFrame('N')
>>> Po = Point('Po')
>>> Inertia(N.x.outer(N.x) + N.y.outer(N.y) + N.z.outer(N.z), Po)
((N.x|N.x) + (N.y|N.y) + (N.z|N.z), Po)
In the example above the Dyadic was created manually, one can however also
use the ``inertia`` function for this or the class method ``from_tensor`` as
shown below.
>>> Inertia.from_inertia_scalars(Po, N, 1, 1, 1)
((N.x|N.x) + (N.y|N.y) + (N.z|N.z), Po)
"""
def __new__(cls, dyadic, point):
# Switch order if given in the wrong order
if isinstance(dyadic, Point) and isinstance(point, Dyadic):
point, dyadic = dyadic, point
if not isinstance(point, Point):
raise TypeError('Reference point should be of type Point')
if not isinstance(dyadic, Dyadic):
raise TypeError('Inertia value should be expressed as a Dyadic')
return super().__new__(cls, dyadic, point)
@classmethod
def from_inertia_scalars(cls, point, frame, ixx, iyy, izz, ixy=0, iyz=0,
izx=0):
"""Simple way to create an Inertia object based on the tensor values.
Explanation
===========
This class method uses the :func`~.inertia` to create the Dyadic based
on the tensor values.
Parameters
==========
point : Point
The reference point of the inertia.
frame : ReferenceFrame
The frame the inertia is defined in.
ixx : Sympifyable
The xx element in the inertia dyadic.
iyy : Sympifyable
The yy element in the inertia dyadic.
izz : Sympifyable
The zz element in the inertia dyadic.
ixy : Sympifyable
The xy element in the inertia dyadic.
iyz : Sympifyable
The yz element in the inertia dyadic.
izx : Sympifyable
The zx element in the inertia dyadic.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Inertia
>>> ixx, iyy, izz, ixy, iyz, izx = symbols('ixx iyy izz ixy iyz izx')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> I = Inertia.from_inertia_scalars(P, N, ixx, iyy, izz, ixy, iyz, izx)
The tensor values can easily be seen when converting the dyadic to a
matrix.
>>> I.dyadic.to_matrix(N)
Matrix([
[ixx, ixy, izx],
[ixy, iyy, iyz],
[izx, iyz, izz]])
"""
return cls(inertia(frame, ixx, iyy, izz, ixy, iyz, izx), point)
def __add__(self, other):
raise TypeError(f"unsupported operand type(s) for +: "
f"'{self.__class__.__name__}' and "
f"'{other.__class__.__name__}'")
def __mul__(self, other):
raise TypeError(f"unsupported operand type(s) for *: "
f"'{self.__class__.__name__}' and "
f"'{other.__class__.__name__}'")
__radd__ = __add__
__rmul__ = __mul__
|