Spaces:
Sleeping
Sleeping
import pytest | |
from sympy.core.numbers import Float | |
from sympy.core.function import (Derivative, Function) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.functions import exp, cos, sin, tan, cosh, sinh | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\ | |
intersection, centroid, Point3D, Line3D, Ray, Ellipse | |
from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar | |
from sympy.solvers.solvers import solve | |
from sympy.testing.pytest import raises | |
def test_idiff(): | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
t = Symbol('t', real=True) | |
f = Function('f') | |
g = Function('g') | |
# the use of idiff in ellipse also provides coverage | |
circ = x**2 + y**2 - 4 | |
ans = -3*x*(x**2/y**2 + 1)/y**3 | |
assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3) | |
assert ans == idiff(circ, [y], x, 3) | |
assert idiff(circ, y, x, 3) == ans | |
explicit = 12*x/sqrt(-x**2 + 4)**5 | |
assert ans.subs(y, solve(circ, y)[0]).equals(explicit) | |
assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)] | |
assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1 | |
assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1) | |
assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x) | |
assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x) | |
assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x) | |
# this should be fast | |
fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10)) | |
assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \ | |
2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3 | |
def test_intersection(): | |
assert intersection(Point(0, 0)) == [] | |
raises(TypeError, lambda: intersection(Point(0, 0), 3)) | |
assert intersection( | |
Segment((0, 0), (2, 0)), | |
Segment((-1, 0), (1, 0)), | |
Line((0, 0), (0, 1)), pairwise=True) == [ | |
Point(0, 0), Segment((0, 0), (1, 0))] | |
assert intersection( | |
Line((0, 0), (0, 1)), | |
Segment((0, 0), (2, 0)), | |
Segment((-1, 0), (1, 0)), pairwise=True) == [ | |
Point(0, 0), Segment((0, 0), (1, 0))] | |
assert intersection( | |
Line((0, 0), (0, 1)), | |
Segment((0, 0), (2, 0)), | |
Segment((-1, 0), (1, 0)), | |
Line((0, 0), slope=1), pairwise=True) == [ | |
Point(0, 0), Segment((0, 0), (1, 0))] | |
R = 4.0 | |
c = intersection( | |
Ray(Point2D(0.001, -1), | |
Point2D(0.0008, -1.7)), | |
Ellipse(center=Point2D(0, 0), hradius=R, vradius=2.0), pairwise=True)[0].coordinates | |
assert c == pytest.approx( | |
Point2D(0.000714285723396502, -1.99999996811224, evaluate=False).coordinates) | |
# check this is responds to a lower precision parameter | |
R = Float(4, 5) | |
c2 = intersection( | |
Ray(Point2D(0.001, -1), | |
Point2D(0.0008, -1.7)), | |
Ellipse(center=Point2D(0, 0), hradius=R, vradius=2.0), pairwise=True)[0].coordinates | |
assert c2 == pytest.approx( | |
Point2D(0.000714285723396502, -1.99999996811224, evaluate=False).coordinates) | |
assert c[0]._prec == 53 | |
assert c2[0]._prec == 20 | |
def test_convex_hull(): | |
raises(TypeError, lambda: convex_hull(Point(0, 0), 3)) | |
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] | |
assert convex_hull(*points, **{"polygon": False}) == ( | |
[Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)], | |
[Point2D(-5, -2), Point2D(15, -4)]) | |
def test_centroid(): | |
p = Polygon((0, 0), (10, 0), (10, 10)) | |
q = p.translate(0, 20) | |
assert centroid(p, q) == Point(20, 40)/3 | |
p = Segment((0, 0), (2, 0)) | |
q = Segment((0, 0), (2, 2)) | |
assert centroid(p, q) == Point(1, -sqrt(2) + 2) | |
assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2 | |
assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3 | |
def test_farthest_points_closest_points(): | |
from sympy.core.random import randint | |
from sympy.utilities.iterables import subsets | |
for how in (min, max): | |
if how == min: | |
func = closest_points | |
else: | |
func = farthest_points | |
raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0))) | |
# 3rd pt dx is close and pt is closer to 1st pt | |
p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)] | |
# 3rd pt dx is close and pt is closer to 2nd pt | |
p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)] | |
# 3rd pt dx is close and but pt is not closer | |
p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)] | |
# 3rd pt dx is not closer and it's closer to 2nd pt | |
p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)] | |
# 3rd pt dx is not closer and it's closer to 1st pt | |
p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)] | |
# duplicate point doesn't affect outcome | |
dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)] | |
# symbolic | |
x = Symbol('x', positive=True) | |
s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))] | |
for points in (p1, p2, p3, p4, p5, dup, s): | |
d = how(i.distance(j) for i, j in subsets(set(points), 2)) | |
ans = a, b = list(func(*points))[0] | |
assert a.distance(b) == d | |
assert ans == _ordered_points(ans) | |
# if the following ever fails, the above tests were not sufficient | |
# and the logical error in the routine should be fixed | |
points = set() | |
while len(points) != 7: | |
points.add(Point2D(randint(1, 100), randint(1, 100))) | |
points = list(points) | |
d = how(i.distance(j) for i, j in subsets(points, 2)) | |
ans = a, b = list(func(*points))[0] | |
assert a.distance(b) == d | |
assert ans == _ordered_points(ans) | |
# equidistant points | |
a, b, c = ( | |
Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2)) | |
ans = {_ordered_points((i, j)) | |
for i, j in subsets((a, b, c), 2)} | |
assert closest_points(b, c, a) == ans | |
assert farthest_points(b, c, a) == ans | |
# unique to farthest | |
points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] | |
assert farthest_points(*points) == { | |
(Point2D(-5, 2), Point2D(15, 4))} | |
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] | |
assert farthest_points(*points) == { | |
(Point2D(-5, -2), Point2D(15, -4))} | |
assert farthest_points((1, 1), (0, 0)) == { | |
(Point2D(0, 0), Point2D(1, 1))} | |
raises(ValueError, lambda: farthest_points((1, 1))) | |
def test_are_coplanar(): | |
a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) | |
b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) | |
c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) | |
d = Line(Point2D(0, 3), Point2D(1, 5)) | |
assert are_coplanar(a, b, c) == False | |
assert are_coplanar(a, d) == False | |