File size: 7,044 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pytest
from sympy.core.numbers import Float
from sympy.core.function import (Derivative, Function)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions import exp, cos, sin, tan, cosh, sinh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\
    intersection, centroid, Point3D, Line3D, Ray, Ellipse
from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar
from sympy.solvers.solvers import solve
from sympy.testing.pytest import raises


def test_idiff():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    f = Function('f')
    g = Function('g')
    # the use of idiff in ellipse also provides coverage
    circ = x**2 + y**2 - 4
    ans = -3*x*(x**2/y**2 + 1)/y**3
    assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3)
    assert ans == idiff(circ, [y], x, 3)
    assert idiff(circ, y, x, 3) == ans
    explicit  = 12*x/sqrt(-x**2 + 4)**5
    assert ans.subs(y, solve(circ, y)[0]).equals(explicit)
    assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)]
    assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1
    assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1)
    assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x)
    assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x)
    assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x)
    # this should be fast
    fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10))
    assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \
        2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3


def test_intersection():
    assert intersection(Point(0, 0)) == []
    raises(TypeError, lambda: intersection(Point(0, 0), 3))
    assert intersection(
            Segment((0, 0), (2, 0)),
            Segment((-1, 0), (1, 0)),
            Line((0, 0), (0, 1)), pairwise=True) == [
        Point(0, 0), Segment((0, 0), (1, 0))]
    assert intersection(
            Line((0, 0), (0, 1)),
            Segment((0, 0), (2, 0)),
            Segment((-1, 0), (1, 0)), pairwise=True) == [
        Point(0, 0), Segment((0, 0), (1, 0))]
    assert intersection(
            Line((0, 0), (0, 1)),
            Segment((0, 0), (2, 0)),
            Segment((-1, 0), (1, 0)),
            Line((0, 0), slope=1), pairwise=True) == [
        Point(0, 0), Segment((0, 0), (1, 0))]
    R = 4.0
    c = intersection(
            Ray(Point2D(0.001, -1),
            Point2D(0.0008, -1.7)),
            Ellipse(center=Point2D(0, 0), hradius=R, vradius=2.0), pairwise=True)[0].coordinates
    assert c == pytest.approx(
            Point2D(0.000714285723396502, -1.99999996811224, evaluate=False).coordinates)
    # check this is responds to a lower precision parameter
    R = Float(4, 5)
    c2 = intersection(
            Ray(Point2D(0.001, -1),
            Point2D(0.0008, -1.7)),
            Ellipse(center=Point2D(0, 0), hradius=R, vradius=2.0), pairwise=True)[0].coordinates
    assert c2 == pytest.approx(
            Point2D(0.000714285723396502, -1.99999996811224, evaluate=False).coordinates)
    assert c[0]._prec == 53
    assert c2[0]._prec == 20


def test_convex_hull():
    raises(TypeError, lambda: convex_hull(Point(0, 0), 3))
    points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
    assert convex_hull(*points, **{"polygon": False}) == (
        [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)],
        [Point2D(-5, -2), Point2D(15, -4)])


def test_centroid():
    p = Polygon((0, 0), (10, 0), (10, 10))
    q = p.translate(0, 20)
    assert centroid(p, q) == Point(20, 40)/3
    p = Segment((0, 0), (2, 0))
    q = Segment((0, 0), (2, 2))
    assert centroid(p, q) == Point(1, -sqrt(2) + 2)
    assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2
    assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3


def test_farthest_points_closest_points():
    from sympy.core.random import randint
    from sympy.utilities.iterables import subsets

    for how in (min, max):
        if how == min:
            func = closest_points
        else:
            func = farthest_points

        raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0)))

        # 3rd pt dx is close and pt is closer to 1st pt
        p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)]
        # 3rd pt dx is close and pt is closer to 2nd pt
        p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)]
        # 3rd pt dx is close and but pt is not closer
        p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)]
        # 3rd pt dx is not closer and it's closer to 2nd pt
        p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)]
        # 3rd pt dx is not closer and it's closer to 1st pt
        p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)]
        # duplicate point doesn't affect outcome
        dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)]
        # symbolic
        x = Symbol('x', positive=True)
        s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))]

        for points in (p1, p2, p3, p4, p5, dup, s):
            d = how(i.distance(j) for i, j in subsets(set(points), 2))
            ans = a, b = list(func(*points))[0]
            assert a.distance(b) == d
            assert ans == _ordered_points(ans)

        # if the following ever fails, the above tests were not sufficient
        # and the logical error in the routine should be fixed
        points = set()
        while len(points) != 7:
            points.add(Point2D(randint(1, 100), randint(1, 100)))
        points = list(points)
        d = how(i.distance(j) for i, j in subsets(points, 2))
        ans = a, b = list(func(*points))[0]
        assert a.distance(b) == d
        assert ans == _ordered_points(ans)

    # equidistant points
    a, b, c = (
        Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2))
    ans = {_ordered_points((i, j))
        for i, j in subsets((a, b, c), 2)}
    assert closest_points(b, c, a) == ans
    assert farthest_points(b, c, a) == ans

    # unique to farthest
    points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
    assert farthest_points(*points) == {
        (Point2D(-5, 2), Point2D(15, 4))}
    points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
    assert farthest_points(*points) == {
        (Point2D(-5, -2), Point2D(15, -4))}
    assert farthest_points((1, 1), (0, 0)) == {
        (Point2D(0, 0), Point2D(1, 1))}
    raises(ValueError, lambda: farthest_points((1, 1)))


def test_are_coplanar():
    a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
    d = Line(Point2D(0, 3), Point2D(1, 5))

    assert are_coplanar(a, b, c) == False
    assert are_coplanar(a, d) == False