Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
17 kB
# sympy.external.ntheory
#
# This module provides pure Python implementations of some number theory
# functions that are alternately used from gmpy2 if it is installed.
import sys
import math
import mpmath.libmp as mlib
_small_trailing = [0] * 256
for j in range(1, 8):
_small_trailing[1 << j :: 1 << (j + 1)] = [j] * (1 << (7 - j))
def bit_scan1(x, n=0):
if not x:
return
x = abs(x >> n)
low_byte = x & 0xFF
if low_byte:
return _small_trailing[low_byte] + n
t = 8 + n
x >>= 8
# 2**m is quick for z up through 2**30
z = x.bit_length() - 1
if x == 1 << z:
return z + t
if z < 300:
# fixed 8-byte reduction
while not x & 0xFF:
x >>= 8
t += 8
else:
# binary reduction important when there might be a large
# number of trailing 0s
p = z >> 1
while not x & 0xFF:
while x & ((1 << p) - 1):
p >>= 1
x >>= p
t += p
return t + _small_trailing[x & 0xFF]
def bit_scan0(x, n=0):
return bit_scan1(x + (1 << n), n)
def remove(x, f):
if f < 2:
raise ValueError("factor must be > 1")
if x == 0:
return 0, 0
if f == 2:
b = bit_scan1(x)
return x >> b, b
m = 0
y, rem = divmod(x, f)
while not rem:
x = y
m += 1
if m > 5:
pow_list = [f**2]
while pow_list:
_f = pow_list[-1]
y, rem = divmod(x, _f)
if not rem:
m += 1 << len(pow_list)
x = y
pow_list.append(_f**2)
else:
pow_list.pop()
y, rem = divmod(x, f)
return x, m
def factorial(x):
"""Return x!."""
return int(mlib.ifac(int(x)))
def sqrt(x):
"""Integer square root of x."""
return int(mlib.isqrt(int(x)))
def sqrtrem(x):
"""Integer square root of x and remainder."""
s, r = mlib.sqrtrem(int(x))
return (int(s), int(r))
if sys.version_info[:2] >= (3, 9):
# As of Python 3.9 these can take multiple arguments
gcd = math.gcd
lcm = math.lcm
else:
# Until python 3.8 is no longer supported
from functools import reduce
def gcd(*args):
"""gcd of multiple integers."""
return reduce(math.gcd, args, 0)
def lcm(*args):
"""lcm of multiple integers."""
if 0 in args:
return 0
return reduce(lambda x, y: x*y//math.gcd(x, y), args, 1)
def _sign(n):
if n < 0:
return -1, -n
return 1, n
def gcdext(a, b):
if not a or not b:
g = abs(a) or abs(b)
if not g:
return (0, 0, 0)
return (g, a // g, b // g)
x_sign, a = _sign(a)
y_sign, b = _sign(b)
x, r = 1, 0
y, s = 0, 1
while b:
q, c = divmod(a, b)
a, b = b, c
x, r = r, x - q*r
y, s = s, y - q*s
return (a, x * x_sign, y * y_sign)
def is_square(x):
"""Return True if x is a square number."""
if x < 0:
return False
# Note that the possible values of y**2 % n for a given n are limited.
# For example, when n=4, y**2 % n can only take 0 or 1.
# In other words, if x % 4 is 2 or 3, then x is not a square number.
# Mathematically, it determines if it belongs to the set {y**2 % n},
# but implementationally, it can be realized as a logical conjunction
# with an n-bit integer.
# see https://mersenneforum.org/showpost.php?p=110896
# def magic(n):
# s = {y**2 % n for y in range(n)}
# s = set(range(n)) - s
# return sum(1 << bit for bit in s)
# >>> print(hex(magic(128)))
# 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec
# >>> print(hex(magic(99)))
# 0x5f6f9ffb6fb7ddfcb75befdec
# >>> print(hex(magic(91)))
# 0x6fd1bfcfed5f3679d3ebdec
# >>> print(hex(magic(85)))
# 0xdef9ae771ffe3b9d67dec
if 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec & (1 << (x & 127)):
return False # e.g. 2, 3
m = x % 765765 # 765765 = 99 * 91 * 85
if 0x5f6f9ffb6fb7ddfcb75befdec & (1 << (m % 99)):
return False # e.g. 17, 68
if 0x6fd1bfcfed5f3679d3ebdec & (1 << (m % 91)):
return False # e.g. 97, 388
if 0xdef9ae771ffe3b9d67dec & (1 << (m % 85)):
return False # e.g. 793, 1408
return mlib.sqrtrem(int(x))[1] == 0
def invert(x, m):
"""Modular inverse of x modulo m.
Returns y such that x*y == 1 mod m.
Uses ``math.pow`` but reproduces the behaviour of ``gmpy2.invert``
which raises ZeroDivisionError if no inverse exists.
"""
try:
return pow(x, -1, m)
except ValueError:
raise ZeroDivisionError("invert() no inverse exists")
def legendre(x, y):
"""Legendre symbol (x / y).
Following the implementation of gmpy2,
the error is raised only when y is an even number.
"""
if y <= 0 or not y % 2:
raise ValueError("y should be an odd prime")
x %= y
if not x:
return 0
if pow(x, (y - 1) // 2, y) == 1:
return 1
return -1
def jacobi(x, y):
"""Jacobi symbol (x / y)."""
if y <= 0 or not y % 2:
raise ValueError("y should be an odd positive integer")
x %= y
if not x:
return int(y == 1)
if y == 1 or x == 1:
return 1
if gcd(x, y) != 1:
return 0
j = 1
while x != 0:
while x % 2 == 0 and x > 0:
x >>= 1
if y % 8 in [3, 5]:
j = -j
x, y = y, x
if x % 4 == y % 4 == 3:
j = -j
x %= y
return j
def kronecker(x, y):
"""Kronecker symbol (x / y)."""
if gcd(x, y) != 1:
return 0
if y == 0:
return 1
sign = -1 if y < 0 and x < 0 else 1
y = abs(y)
s = bit_scan1(y)
y >>= s
if s % 2 and x % 8 in [3, 5]:
sign = -sign
return sign * jacobi(x, y)
def iroot(y, n):
if y < 0:
raise ValueError("y must be nonnegative")
if n < 1:
raise ValueError("n must be positive")
if y in (0, 1):
return y, True
if n == 1:
return y, True
if n == 2:
x, rem = mlib.sqrtrem(y)
return int(x), not rem
if n >= y.bit_length():
return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
exp = math.log2(y)/n
if exp > 53:
shift = int(exp - 53)
guess = int(2.0**(exp - shift) + 1) << shift
else:
guess = int(2.0**exp)
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n - 1)
xprev, x = x, ((n - 1)*x + y//t)//n
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return x, t == y
def is_fermat_prp(n, a):
if a < 2:
raise ValueError("is_fermat_prp() requires 'a' greater than or equal to 2")
if n < 1:
raise ValueError("is_fermat_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
a %= n
if gcd(n, a) != 1:
raise ValueError("is_fermat_prp() requires gcd(n,a) == 1")
return pow(a, n - 1, n) == 1
def is_euler_prp(n, a):
if a < 2:
raise ValueError("is_euler_prp() requires 'a' greater than or equal to 2")
if n < 1:
raise ValueError("is_euler_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
a %= n
if gcd(n, a) != 1:
raise ValueError("is_euler_prp() requires gcd(n,a) == 1")
return pow(a, n >> 1, n) == jacobi(a, n) % n
def _is_strong_prp(n, a):
s = bit_scan1(n - 1)
a = pow(a, n >> s, n)
if a == 1 or a == n - 1:
return True
for _ in range(s - 1):
a = pow(a, 2, n)
if a == n - 1:
return True
if a == 1:
return False
return False
def is_strong_prp(n, a):
if a < 2:
raise ValueError("is_strong_prp() requires 'a' greater than or equal to 2")
if n < 1:
raise ValueError("is_strong_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
a %= n
if gcd(n, a) != 1:
raise ValueError("is_strong_prp() requires gcd(n,a) == 1")
return _is_strong_prp(n, a)
def _lucas_sequence(n, P, Q, k):
r"""Return the modular Lucas sequence (U_k, V_k, Q_k).
Explanation
===========
Given a Lucas sequence defined by P, Q, returns the kth values for
U and V, along with Q^k, all modulo n. This is intended for use with
possibly very large values of n and k, where the combinatorial functions
would be completely unusable.
.. math ::
U_k = \begin{cases}
0 & \text{if } k = 0\\
1 & \text{if } k = 1\\
PU_{k-1} - QU_{k-2} & \text{if } k > 1
\end{cases}\\
V_k = \begin{cases}
2 & \text{if } k = 0\\
P & \text{if } k = 1\\
PV_{k-1} - QV_{k-2} & \text{if } k > 1
\end{cases}
The modular Lucas sequences are used in numerous places in number theory,
especially in the Lucas compositeness tests and the various n + 1 proofs.
Parameters
==========
n : int
n is an odd number greater than or equal to 3
P : int
Q : int
D determined by D = P**2 - 4*Q is non-zero
k : int
k is a nonnegative integer
Returns
=======
U, V, Qk : (int, int, int)
`(U_k \bmod{n}, V_k \bmod{n}, Q^k \bmod{n})`
Examples
========
>>> from sympy.external.ntheory import _lucas_sequence
>>> N = 10**2000 + 4561
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
(0, 2, 1)
References
==========
.. [1] https://en.wikipedia.org/wiki/Lucas_sequence
"""
if k == 0:
return (0, 2, 1)
D = P**2 - 4*Q
U = 1
V = P
Qk = Q % n
if Q == 1:
# Optimization for extra strong tests.
for b in bin(k)[3:]:
U = (U*V) % n
V = (V*V - 2) % n
if b == "1":
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
elif P == 1 and Q == -1:
# Small optimization for 50% of Selfridge parameters.
for b in bin(k)[3:]:
U = (U*V) % n
if Qk == 1:
V = (V*V - 2) % n
else:
V = (V*V + 2) % n
Qk = 1
if b == "1":
# new_U = (U + V) // 2
# new_V = (5*U + V) // 2 = 2*U + new_U
U, V = U + V, U << 1
if U & 1:
U += n
U >>= 1
V += U
Qk = -1
Qk %= n
elif P == 1:
for b in bin(k)[3:]:
U = (U*V) % n
V = (V*V - 2*Qk) % n
Qk *= Qk
if b == "1":
# new_U = (U + V) // 2
# new_V = new_U - 2*Q*U
U, V = U + V, (Q*U) << 1
if U & 1:
U += n
U >>= 1
V = U - V
Qk *= Q
Qk %= n
else:
# The general case with any P and Q.
for b in bin(k)[3:]:
U = (U*V) % n
V = (V*V - 2*Qk) % n
Qk *= Qk
if b == "1":
U, V = U*P + V, V*P + U*D
if U & 1:
U += n
if V & 1:
V += n
U, V = U >> 1, V >> 1
Qk *= Q
Qk %= n
return (U % n, V % n, Qk)
def is_fibonacci_prp(n, p, q):
d = p**2 - 4*q
if d == 0 or p <= 0 or q not in [1, -1]:
raise ValueError("invalid values for p,q in is_fibonacci_prp()")
if n < 1:
raise ValueError("is_fibonacci_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
return _lucas_sequence(n, p, q, n)[1] == p % n
def is_lucas_prp(n, p, q):
d = p**2 - 4*q
if d == 0:
raise ValueError("invalid values for p,q in is_lucas_prp()")
if n < 1:
raise ValueError("is_lucas_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
if gcd(n, q*d) not in [1, n]:
raise ValueError("is_lucas_prp() requires gcd(n,2*q*D) == 1")
return _lucas_sequence(n, p, q, n - jacobi(d, n))[0] == 0
def _is_selfridge_prp(n):
"""Lucas compositeness test with the Selfridge parameters for n.
Explanation
===========
The Lucas compositeness test checks whether n is a prime number.
The test can be run with arbitrary parameters ``P`` and ``Q``, which also change the performance of the test.
So, which parameters are most effective for running the Lucas compositeness test?
As an algorithm for determining ``P`` and ``Q``, Selfridge proposed method A [1]_ page 1401
(Since two methods were proposed, referred to simply as A and B in the paper,
we will refer to one of them as "method A").
method A fixes ``P = 1``. Then, ``D`` defined by ``D = P**2 - 4Q`` is varied from 5, -7, 9, -11, 13, and so on,
with the first ``D`` being ``jacobi(D, n) == -1``. Once ``D`` is determined,
``Q`` is determined to be ``(P**2 - D)//4``.
References
==========
.. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
http://mpqs.free.fr/LucasPseudoprimes.pdf
"""
for D in range(5, 1_000_000, 2):
if D & 2: # if D % 4 == 3
D = -D
j = jacobi(D, n)
if j == -1:
return _lucas_sequence(n, 1, (1-D) // 4, n + 1)[0] == 0
if j == 0 and D % n:
return False
# When j == -1 is hard to find, suspect a square number
if D == 13 and is_square(n):
return False
raise ValueError("appropriate value for D cannot be found in is_selfridge_prp()")
def is_selfridge_prp(n):
if n < 1:
raise ValueError("is_selfridge_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
return _is_selfridge_prp(n)
def is_strong_lucas_prp(n, p, q):
D = p**2 - 4*q
if D == 0:
raise ValueError("invalid values for p,q in is_strong_lucas_prp()")
if n < 1:
raise ValueError("is_selfridge_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
if gcd(n, q*D) not in [1, n]:
raise ValueError("is_strong_lucas_prp() requires gcd(n,2*q*D) == 1")
j = jacobi(D, n)
s = bit_scan1(n - j)
U, V, Qk = _lucas_sequence(n, p, q, (n - j) >> s)
if U == 0 or V == 0:
return True
for _ in range(s - 1):
V = (V*V - 2*Qk) % n
if V == 0:
return True
Qk = pow(Qk, 2, n)
return False
def _is_strong_selfridge_prp(n):
for D in range(5, 1_000_000, 2):
if D & 2: # if D % 4 == 3
D = -D
j = jacobi(D, n)
if j == -1:
s = bit_scan1(n + 1)
U, V, Qk = _lucas_sequence(n, 1, (1-D) // 4, (n + 1) >> s)
if U == 0 or V == 0:
return True
for _ in range(s - 1):
V = (V*V - 2*Qk) % n
if V == 0:
return True
Qk = pow(Qk, 2, n)
return False
if j == 0 and D % n:
return False
# When j == -1 is hard to find, suspect a square number
if D == 13 and is_square(n):
return False
raise ValueError("appropriate value for D cannot be found in is_strong_selfridge_prp()")
def is_strong_selfridge_prp(n):
if n < 1:
raise ValueError("is_strong_selfridge_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
return _is_strong_selfridge_prp(n)
def is_bpsw_prp(n):
if n < 1:
raise ValueError("is_bpsw_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
return _is_strong_prp(n, 2) and _is_selfridge_prp(n)
def is_strong_bpsw_prp(n):
if n < 1:
raise ValueError("is_strong_bpsw_prp() requires 'n' be greater than 0")
if n == 1:
return False
if n % 2 == 0:
return n == 2
return _is_strong_prp(n, 2) and _is_strong_selfridge_prp(n)