Spaces:
Sleeping
Sleeping
# sympy.external.ntheory | |
# | |
# This module provides pure Python implementations of some number theory | |
# functions that are alternately used from gmpy2 if it is installed. | |
import sys | |
import math | |
import mpmath.libmp as mlib | |
_small_trailing = [0] * 256 | |
for j in range(1, 8): | |
_small_trailing[1 << j :: 1 << (j + 1)] = [j] * (1 << (7 - j)) | |
def bit_scan1(x, n=0): | |
if not x: | |
return | |
x = abs(x >> n) | |
low_byte = x & 0xFF | |
if low_byte: | |
return _small_trailing[low_byte] + n | |
t = 8 + n | |
x >>= 8 | |
# 2**m is quick for z up through 2**30 | |
z = x.bit_length() - 1 | |
if x == 1 << z: | |
return z + t | |
if z < 300: | |
# fixed 8-byte reduction | |
while not x & 0xFF: | |
x >>= 8 | |
t += 8 | |
else: | |
# binary reduction important when there might be a large | |
# number of trailing 0s | |
p = z >> 1 | |
while not x & 0xFF: | |
while x & ((1 << p) - 1): | |
p >>= 1 | |
x >>= p | |
t += p | |
return t + _small_trailing[x & 0xFF] | |
def bit_scan0(x, n=0): | |
return bit_scan1(x + (1 << n), n) | |
def remove(x, f): | |
if f < 2: | |
raise ValueError("factor must be > 1") | |
if x == 0: | |
return 0, 0 | |
if f == 2: | |
b = bit_scan1(x) | |
return x >> b, b | |
m = 0 | |
y, rem = divmod(x, f) | |
while not rem: | |
x = y | |
m += 1 | |
if m > 5: | |
pow_list = [f**2] | |
while pow_list: | |
_f = pow_list[-1] | |
y, rem = divmod(x, _f) | |
if not rem: | |
m += 1 << len(pow_list) | |
x = y | |
pow_list.append(_f**2) | |
else: | |
pow_list.pop() | |
y, rem = divmod(x, f) | |
return x, m | |
def factorial(x): | |
"""Return x!.""" | |
return int(mlib.ifac(int(x))) | |
def sqrt(x): | |
"""Integer square root of x.""" | |
return int(mlib.isqrt(int(x))) | |
def sqrtrem(x): | |
"""Integer square root of x and remainder.""" | |
s, r = mlib.sqrtrem(int(x)) | |
return (int(s), int(r)) | |
if sys.version_info[:2] >= (3, 9): | |
# As of Python 3.9 these can take multiple arguments | |
gcd = math.gcd | |
lcm = math.lcm | |
else: | |
# Until python 3.8 is no longer supported | |
from functools import reduce | |
def gcd(*args): | |
"""gcd of multiple integers.""" | |
return reduce(math.gcd, args, 0) | |
def lcm(*args): | |
"""lcm of multiple integers.""" | |
if 0 in args: | |
return 0 | |
return reduce(lambda x, y: x*y//math.gcd(x, y), args, 1) | |
def _sign(n): | |
if n < 0: | |
return -1, -n | |
return 1, n | |
def gcdext(a, b): | |
if not a or not b: | |
g = abs(a) or abs(b) | |
if not g: | |
return (0, 0, 0) | |
return (g, a // g, b // g) | |
x_sign, a = _sign(a) | |
y_sign, b = _sign(b) | |
x, r = 1, 0 | |
y, s = 0, 1 | |
while b: | |
q, c = divmod(a, b) | |
a, b = b, c | |
x, r = r, x - q*r | |
y, s = s, y - q*s | |
return (a, x * x_sign, y * y_sign) | |
def is_square(x): | |
"""Return True if x is a square number.""" | |
if x < 0: | |
return False | |
# Note that the possible values of y**2 % n for a given n are limited. | |
# For example, when n=4, y**2 % n can only take 0 or 1. | |
# In other words, if x % 4 is 2 or 3, then x is not a square number. | |
# Mathematically, it determines if it belongs to the set {y**2 % n}, | |
# but implementationally, it can be realized as a logical conjunction | |
# with an n-bit integer. | |
# see https://mersenneforum.org/showpost.php?p=110896 | |
# def magic(n): | |
# s = {y**2 % n for y in range(n)} | |
# s = set(range(n)) - s | |
# return sum(1 << bit for bit in s) | |
# >>> print(hex(magic(128))) | |
# 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec | |
# >>> print(hex(magic(99))) | |
# 0x5f6f9ffb6fb7ddfcb75befdec | |
# >>> print(hex(magic(91))) | |
# 0x6fd1bfcfed5f3679d3ebdec | |
# >>> print(hex(magic(85))) | |
# 0xdef9ae771ffe3b9d67dec | |
if 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec & (1 << (x & 127)): | |
return False # e.g. 2, 3 | |
m = x % 765765 # 765765 = 99 * 91 * 85 | |
if 0x5f6f9ffb6fb7ddfcb75befdec & (1 << (m % 99)): | |
return False # e.g. 17, 68 | |
if 0x6fd1bfcfed5f3679d3ebdec & (1 << (m % 91)): | |
return False # e.g. 97, 388 | |
if 0xdef9ae771ffe3b9d67dec & (1 << (m % 85)): | |
return False # e.g. 793, 1408 | |
return mlib.sqrtrem(int(x))[1] == 0 | |
def invert(x, m): | |
"""Modular inverse of x modulo m. | |
Returns y such that x*y == 1 mod m. | |
Uses ``math.pow`` but reproduces the behaviour of ``gmpy2.invert`` | |
which raises ZeroDivisionError if no inverse exists. | |
""" | |
try: | |
return pow(x, -1, m) | |
except ValueError: | |
raise ZeroDivisionError("invert() no inverse exists") | |
def legendre(x, y): | |
"""Legendre symbol (x / y). | |
Following the implementation of gmpy2, | |
the error is raised only when y is an even number. | |
""" | |
if y <= 0 or not y % 2: | |
raise ValueError("y should be an odd prime") | |
x %= y | |
if not x: | |
return 0 | |
if pow(x, (y - 1) // 2, y) == 1: | |
return 1 | |
return -1 | |
def jacobi(x, y): | |
"""Jacobi symbol (x / y).""" | |
if y <= 0 or not y % 2: | |
raise ValueError("y should be an odd positive integer") | |
x %= y | |
if not x: | |
return int(y == 1) | |
if y == 1 or x == 1: | |
return 1 | |
if gcd(x, y) != 1: | |
return 0 | |
j = 1 | |
while x != 0: | |
while x % 2 == 0 and x > 0: | |
x >>= 1 | |
if y % 8 in [3, 5]: | |
j = -j | |
x, y = y, x | |
if x % 4 == y % 4 == 3: | |
j = -j | |
x %= y | |
return j | |
def kronecker(x, y): | |
"""Kronecker symbol (x / y).""" | |
if gcd(x, y) != 1: | |
return 0 | |
if y == 0: | |
return 1 | |
sign = -1 if y < 0 and x < 0 else 1 | |
y = abs(y) | |
s = bit_scan1(y) | |
y >>= s | |
if s % 2 and x % 8 in [3, 5]: | |
sign = -sign | |
return sign * jacobi(x, y) | |
def iroot(y, n): | |
if y < 0: | |
raise ValueError("y must be nonnegative") | |
if n < 1: | |
raise ValueError("n must be positive") | |
if y in (0, 1): | |
return y, True | |
if n == 1: | |
return y, True | |
if n == 2: | |
x, rem = mlib.sqrtrem(y) | |
return int(x), not rem | |
if n >= y.bit_length(): | |
return 1, False | |
# Get initial estimate for Newton's method. Care must be taken to | |
# avoid overflow | |
try: | |
guess = int(y**(1./n) + 0.5) | |
except OverflowError: | |
exp = math.log2(y)/n | |
if exp > 53: | |
shift = int(exp - 53) | |
guess = int(2.0**(exp - shift) + 1) << shift | |
else: | |
guess = int(2.0**exp) | |
if guess > 2**50: | |
# Newton iteration | |
xprev, x = -1, guess | |
while 1: | |
t = x**(n - 1) | |
xprev, x = x, ((n - 1)*x + y//t)//n | |
if abs(x - xprev) < 2: | |
break | |
else: | |
x = guess | |
# Compensate | |
t = x**n | |
while t < y: | |
x += 1 | |
t = x**n | |
while t > y: | |
x -= 1 | |
t = x**n | |
return x, t == y | |
def is_fermat_prp(n, a): | |
if a < 2: | |
raise ValueError("is_fermat_prp() requires 'a' greater than or equal to 2") | |
if n < 1: | |
raise ValueError("is_fermat_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
a %= n | |
if gcd(n, a) != 1: | |
raise ValueError("is_fermat_prp() requires gcd(n,a) == 1") | |
return pow(a, n - 1, n) == 1 | |
def is_euler_prp(n, a): | |
if a < 2: | |
raise ValueError("is_euler_prp() requires 'a' greater than or equal to 2") | |
if n < 1: | |
raise ValueError("is_euler_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
a %= n | |
if gcd(n, a) != 1: | |
raise ValueError("is_euler_prp() requires gcd(n,a) == 1") | |
return pow(a, n >> 1, n) == jacobi(a, n) % n | |
def _is_strong_prp(n, a): | |
s = bit_scan1(n - 1) | |
a = pow(a, n >> s, n) | |
if a == 1 or a == n - 1: | |
return True | |
for _ in range(s - 1): | |
a = pow(a, 2, n) | |
if a == n - 1: | |
return True | |
if a == 1: | |
return False | |
return False | |
def is_strong_prp(n, a): | |
if a < 2: | |
raise ValueError("is_strong_prp() requires 'a' greater than or equal to 2") | |
if n < 1: | |
raise ValueError("is_strong_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
a %= n | |
if gcd(n, a) != 1: | |
raise ValueError("is_strong_prp() requires gcd(n,a) == 1") | |
return _is_strong_prp(n, a) | |
def _lucas_sequence(n, P, Q, k): | |
r"""Return the modular Lucas sequence (U_k, V_k, Q_k). | |
Explanation | |
=========== | |
Given a Lucas sequence defined by P, Q, returns the kth values for | |
U and V, along with Q^k, all modulo n. This is intended for use with | |
possibly very large values of n and k, where the combinatorial functions | |
would be completely unusable. | |
.. math :: | |
U_k = \begin{cases} | |
0 & \text{if } k = 0\\ | |
1 & \text{if } k = 1\\ | |
PU_{k-1} - QU_{k-2} & \text{if } k > 1 | |
\end{cases}\\ | |
V_k = \begin{cases} | |
2 & \text{if } k = 0\\ | |
P & \text{if } k = 1\\ | |
PV_{k-1} - QV_{k-2} & \text{if } k > 1 | |
\end{cases} | |
The modular Lucas sequences are used in numerous places in number theory, | |
especially in the Lucas compositeness tests and the various n + 1 proofs. | |
Parameters | |
========== | |
n : int | |
n is an odd number greater than or equal to 3 | |
P : int | |
Q : int | |
D determined by D = P**2 - 4*Q is non-zero | |
k : int | |
k is a nonnegative integer | |
Returns | |
======= | |
U, V, Qk : (int, int, int) | |
`(U_k \bmod{n}, V_k \bmod{n}, Q^k \bmod{n})` | |
Examples | |
======== | |
>>> from sympy.external.ntheory import _lucas_sequence | |
>>> N = 10**2000 + 4561 | |
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol | |
(0, 2, 1) | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Lucas_sequence | |
""" | |
if k == 0: | |
return (0, 2, 1) | |
D = P**2 - 4*Q | |
U = 1 | |
V = P | |
Qk = Q % n | |
if Q == 1: | |
# Optimization for extra strong tests. | |
for b in bin(k)[3:]: | |
U = (U*V) % n | |
V = (V*V - 2) % n | |
if b == "1": | |
U, V = U*P + V, V*P + U*D | |
if U & 1: | |
U += n | |
if V & 1: | |
V += n | |
U, V = U >> 1, V >> 1 | |
elif P == 1 and Q == -1: | |
# Small optimization for 50% of Selfridge parameters. | |
for b in bin(k)[3:]: | |
U = (U*V) % n | |
if Qk == 1: | |
V = (V*V - 2) % n | |
else: | |
V = (V*V + 2) % n | |
Qk = 1 | |
if b == "1": | |
# new_U = (U + V) // 2 | |
# new_V = (5*U + V) // 2 = 2*U + new_U | |
U, V = U + V, U << 1 | |
if U & 1: | |
U += n | |
U >>= 1 | |
V += U | |
Qk = -1 | |
Qk %= n | |
elif P == 1: | |
for b in bin(k)[3:]: | |
U = (U*V) % n | |
V = (V*V - 2*Qk) % n | |
Qk *= Qk | |
if b == "1": | |
# new_U = (U + V) // 2 | |
# new_V = new_U - 2*Q*U | |
U, V = U + V, (Q*U) << 1 | |
if U & 1: | |
U += n | |
U >>= 1 | |
V = U - V | |
Qk *= Q | |
Qk %= n | |
else: | |
# The general case with any P and Q. | |
for b in bin(k)[3:]: | |
U = (U*V) % n | |
V = (V*V - 2*Qk) % n | |
Qk *= Qk | |
if b == "1": | |
U, V = U*P + V, V*P + U*D | |
if U & 1: | |
U += n | |
if V & 1: | |
V += n | |
U, V = U >> 1, V >> 1 | |
Qk *= Q | |
Qk %= n | |
return (U % n, V % n, Qk) | |
def is_fibonacci_prp(n, p, q): | |
d = p**2 - 4*q | |
if d == 0 or p <= 0 or q not in [1, -1]: | |
raise ValueError("invalid values for p,q in is_fibonacci_prp()") | |
if n < 1: | |
raise ValueError("is_fibonacci_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
return _lucas_sequence(n, p, q, n)[1] == p % n | |
def is_lucas_prp(n, p, q): | |
d = p**2 - 4*q | |
if d == 0: | |
raise ValueError("invalid values for p,q in is_lucas_prp()") | |
if n < 1: | |
raise ValueError("is_lucas_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
if gcd(n, q*d) not in [1, n]: | |
raise ValueError("is_lucas_prp() requires gcd(n,2*q*D) == 1") | |
return _lucas_sequence(n, p, q, n - jacobi(d, n))[0] == 0 | |
def _is_selfridge_prp(n): | |
"""Lucas compositeness test with the Selfridge parameters for n. | |
Explanation | |
=========== | |
The Lucas compositeness test checks whether n is a prime number. | |
The test can be run with arbitrary parameters ``P`` and ``Q``, which also change the performance of the test. | |
So, which parameters are most effective for running the Lucas compositeness test? | |
As an algorithm for determining ``P`` and ``Q``, Selfridge proposed method A [1]_ page 1401 | |
(Since two methods were proposed, referred to simply as A and B in the paper, | |
we will refer to one of them as "method A"). | |
method A fixes ``P = 1``. Then, ``D`` defined by ``D = P**2 - 4Q`` is varied from 5, -7, 9, -11, 13, and so on, | |
with the first ``D`` being ``jacobi(D, n) == -1``. Once ``D`` is determined, | |
``Q`` is determined to be ``(P**2 - D)//4``. | |
References | |
========== | |
.. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes, | |
Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417, | |
https://doi.org/10.1090%2FS0025-5718-1980-0583518-6 | |
http://mpqs.free.fr/LucasPseudoprimes.pdf | |
""" | |
for D in range(5, 1_000_000, 2): | |
if D & 2: # if D % 4 == 3 | |
D = -D | |
j = jacobi(D, n) | |
if j == -1: | |
return _lucas_sequence(n, 1, (1-D) // 4, n + 1)[0] == 0 | |
if j == 0 and D % n: | |
return False | |
# When j == -1 is hard to find, suspect a square number | |
if D == 13 and is_square(n): | |
return False | |
raise ValueError("appropriate value for D cannot be found in is_selfridge_prp()") | |
def is_selfridge_prp(n): | |
if n < 1: | |
raise ValueError("is_selfridge_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
return _is_selfridge_prp(n) | |
def is_strong_lucas_prp(n, p, q): | |
D = p**2 - 4*q | |
if D == 0: | |
raise ValueError("invalid values for p,q in is_strong_lucas_prp()") | |
if n < 1: | |
raise ValueError("is_selfridge_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
if gcd(n, q*D) not in [1, n]: | |
raise ValueError("is_strong_lucas_prp() requires gcd(n,2*q*D) == 1") | |
j = jacobi(D, n) | |
s = bit_scan1(n - j) | |
U, V, Qk = _lucas_sequence(n, p, q, (n - j) >> s) | |
if U == 0 or V == 0: | |
return True | |
for _ in range(s - 1): | |
V = (V*V - 2*Qk) % n | |
if V == 0: | |
return True | |
Qk = pow(Qk, 2, n) | |
return False | |
def _is_strong_selfridge_prp(n): | |
for D in range(5, 1_000_000, 2): | |
if D & 2: # if D % 4 == 3 | |
D = -D | |
j = jacobi(D, n) | |
if j == -1: | |
s = bit_scan1(n + 1) | |
U, V, Qk = _lucas_sequence(n, 1, (1-D) // 4, (n + 1) >> s) | |
if U == 0 or V == 0: | |
return True | |
for _ in range(s - 1): | |
V = (V*V - 2*Qk) % n | |
if V == 0: | |
return True | |
Qk = pow(Qk, 2, n) | |
return False | |
if j == 0 and D % n: | |
return False | |
# When j == -1 is hard to find, suspect a square number | |
if D == 13 and is_square(n): | |
return False | |
raise ValueError("appropriate value for D cannot be found in is_strong_selfridge_prp()") | |
def is_strong_selfridge_prp(n): | |
if n < 1: | |
raise ValueError("is_strong_selfridge_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
return _is_strong_selfridge_prp(n) | |
def is_bpsw_prp(n): | |
if n < 1: | |
raise ValueError("is_bpsw_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
return _is_strong_prp(n, 2) and _is_selfridge_prp(n) | |
def is_strong_bpsw_prp(n): | |
if n < 1: | |
raise ValueError("is_strong_bpsw_prp() requires 'n' be greater than 0") | |
if n == 1: | |
return False | |
if n % 2 == 0: | |
return n == 2 | |
return _is_strong_prp(n, 2) and _is_strong_selfridge_prp(n) | |