File size: 17,025 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# sympy.external.ntheory
#
# This module provides pure Python implementations of some number theory
# functions that are alternately used from gmpy2 if it is installed.

import sys
import math

import mpmath.libmp as mlib


_small_trailing = [0] * 256
for j in range(1, 8):
    _small_trailing[1 << j :: 1 << (j + 1)] = [j] * (1 << (7 - j))


def bit_scan1(x, n=0):
    if not x:
        return
    x = abs(x >> n)
    low_byte = x & 0xFF
    if low_byte:
        return _small_trailing[low_byte] + n

    t = 8 + n
    x >>= 8
    # 2**m is quick for z up through 2**30
    z = x.bit_length() - 1
    if x == 1 << z:
        return z + t

    if z < 300:
        # fixed 8-byte reduction
        while not x & 0xFF:
            x >>= 8
            t += 8
    else:
        # binary reduction important when there might be a large
        # number of trailing 0s
        p = z >> 1
        while not x & 0xFF:
            while x & ((1 << p) - 1):
                p >>= 1
            x >>= p
            t += p
    return t + _small_trailing[x & 0xFF]


def bit_scan0(x, n=0):
    return bit_scan1(x + (1 << n), n)


def remove(x, f):
    if f < 2:
        raise ValueError("factor must be > 1")
    if x == 0:
        return 0, 0
    if f == 2:
        b = bit_scan1(x)
        return x >> b, b
    m = 0
    y, rem = divmod(x, f)
    while not rem:
        x = y
        m += 1
        if m > 5:
            pow_list = [f**2]
            while pow_list:
                _f = pow_list[-1]
                y, rem = divmod(x, _f)
                if not rem:
                    m += 1 << len(pow_list)
                    x = y
                    pow_list.append(_f**2)
                else:
                    pow_list.pop()
        y, rem = divmod(x, f)
    return x, m


def factorial(x):
    """Return x!."""
    return int(mlib.ifac(int(x)))


def sqrt(x):
    """Integer square root of x."""
    return int(mlib.isqrt(int(x)))


def sqrtrem(x):
    """Integer square root of x and remainder."""
    s, r = mlib.sqrtrem(int(x))
    return (int(s), int(r))


if sys.version_info[:2] >= (3, 9):
    # As of Python 3.9 these can take multiple arguments
    gcd = math.gcd
    lcm = math.lcm

else:
    # Until python 3.8 is no longer supported
    from functools import reduce


    def gcd(*args):
        """gcd of multiple integers."""
        return reduce(math.gcd, args, 0)


    def lcm(*args):
        """lcm of multiple integers."""
        if 0 in args:
            return 0
        return reduce(lambda x, y: x*y//math.gcd(x, y), args, 1)


def _sign(n):
    if n < 0:
        return -1, -n
    return 1, n


def gcdext(a, b):
    if not a or not b:
        g = abs(a) or abs(b)
        if not g:
            return (0, 0, 0)
        return (g, a // g, b // g)

    x_sign, a = _sign(a)
    y_sign, b = _sign(b)
    x, r = 1, 0
    y, s = 0, 1

    while b:
        q, c = divmod(a, b)
        a, b = b, c
        x, r = r, x - q*r
        y, s = s, y - q*s

    return (a, x * x_sign, y * y_sign)


def is_square(x):
    """Return True if x is a square number."""
    if x < 0:
        return False

    # Note that the possible values of y**2 % n for a given n are limited.
    # For example, when n=4, y**2 % n can only take 0 or 1.
    # In other words, if x % 4 is 2 or 3, then x is not a square number.
    # Mathematically, it determines if it belongs to the set {y**2 % n},
    # but implementationally, it can be realized as a logical conjunction
    # with an n-bit integer.
    # see https://mersenneforum.org/showpost.php?p=110896
    # def magic(n):
    #     s = {y**2 % n for y in range(n)}
    #     s = set(range(n)) - s
    #     return sum(1 << bit for bit in s)
    # >>> print(hex(magic(128)))
    # 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec
    # >>> print(hex(magic(99)))
    # 0x5f6f9ffb6fb7ddfcb75befdec
    # >>> print(hex(magic(91)))
    # 0x6fd1bfcfed5f3679d3ebdec
    # >>> print(hex(magic(85)))
    # 0xdef9ae771ffe3b9d67dec
    if 0xfdfdfdedfdfdfdecfdfdfdedfdfcfdec & (1 << (x & 127)):
        return False  # e.g. 2, 3
    m = x % 765765 # 765765 = 99 * 91 * 85
    if 0x5f6f9ffb6fb7ddfcb75befdec & (1 << (m % 99)):
        return False  # e.g. 17, 68
    if 0x6fd1bfcfed5f3679d3ebdec & (1 << (m % 91)):
        return False  # e.g. 97, 388
    if 0xdef9ae771ffe3b9d67dec & (1 << (m % 85)):
        return False  # e.g. 793, 1408
    return mlib.sqrtrem(int(x))[1] == 0


def invert(x, m):
    """Modular inverse of x modulo m.

    Returns y such that x*y == 1 mod m.

    Uses ``math.pow`` but reproduces the behaviour of ``gmpy2.invert``
    which raises ZeroDivisionError if no inverse exists.
    """
    try:
        return pow(x, -1, m)
    except ValueError:
        raise ZeroDivisionError("invert() no inverse exists")


def legendre(x, y):
    """Legendre symbol (x / y).

    Following the implementation of gmpy2,
    the error is raised only when y is an even number.
    """
    if y <= 0 or not y % 2:
        raise ValueError("y should be an odd prime")
    x %= y
    if not x:
        return 0
    if pow(x, (y - 1) // 2, y) == 1:
        return 1
    return -1


def jacobi(x, y):
    """Jacobi symbol (x / y)."""
    if y <= 0 or not y % 2:
        raise ValueError("y should be an odd positive integer")
    x %= y
    if not x:
        return int(y == 1)
    if y == 1 or x == 1:
        return 1
    if gcd(x, y) != 1:
        return 0
    j = 1
    while x != 0:
        while x % 2 == 0 and x > 0:
            x >>= 1
            if y % 8 in [3, 5]:
                j = -j
        x, y = y, x
        if x % 4 == y % 4 == 3:
            j = -j
        x %= y
    return j


def kronecker(x, y):
    """Kronecker symbol (x / y)."""
    if gcd(x, y) != 1:
        return 0
    if y == 0:
        return 1
    sign = -1 if y < 0 and x < 0 else 1
    y = abs(y)
    s = bit_scan1(y)
    y >>= s
    if s % 2 and x % 8 in [3, 5]:
        sign = -sign
    return sign * jacobi(x, y)


def iroot(y, n):
    if y < 0:
        raise ValueError("y must be nonnegative")
    if n < 1:
        raise ValueError("n must be positive")
    if y in (0, 1):
        return y, True
    if n == 1:
        return y, True
    if n == 2:
        x, rem = mlib.sqrtrem(y)
        return int(x), not rem
    if n >= y.bit_length():
        return 1, False
    # Get initial estimate for Newton's method. Care must be taken to
    # avoid overflow
    try:
        guess = int(y**(1./n) + 0.5)
    except OverflowError:
        exp = math.log2(y)/n
        if exp > 53:
            shift = int(exp - 53)
            guess = int(2.0**(exp - shift) + 1) << shift
        else:
            guess = int(2.0**exp)
    if guess > 2**50:
        # Newton iteration
        xprev, x = -1, guess
        while 1:
            t = x**(n - 1)
            xprev, x = x, ((n - 1)*x + y//t)//n
            if abs(x - xprev) < 2:
                break
    else:
        x = guess
    # Compensate
    t = x**n
    while t < y:
        x += 1
        t = x**n
    while t > y:
        x -= 1
        t = x**n
    return x, t == y


def is_fermat_prp(n, a):
    if a < 2:
        raise ValueError("is_fermat_prp() requires 'a' greater than or equal to 2")
    if n < 1:
        raise ValueError("is_fermat_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    a %= n
    if gcd(n, a) != 1:
        raise ValueError("is_fermat_prp() requires gcd(n,a) == 1")
    return pow(a, n - 1, n) == 1


def is_euler_prp(n, a):
    if a < 2:
        raise ValueError("is_euler_prp() requires 'a' greater than or equal to 2")
    if n < 1:
        raise ValueError("is_euler_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    a %= n
    if gcd(n, a) != 1:
        raise ValueError("is_euler_prp() requires gcd(n,a) == 1")
    return pow(a, n >> 1, n) == jacobi(a, n) % n


def _is_strong_prp(n, a):
    s = bit_scan1(n - 1)
    a = pow(a, n >> s, n)
    if a == 1 or a == n - 1:
        return True
    for _ in range(s - 1):
        a = pow(a, 2, n)
        if a == n - 1:
            return True
        if a == 1:
            return False
    return False


def is_strong_prp(n, a):
    if a < 2:
        raise ValueError("is_strong_prp() requires 'a' greater than or equal to 2")
    if n < 1:
        raise ValueError("is_strong_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    a %= n
    if gcd(n, a) != 1:
        raise ValueError("is_strong_prp() requires gcd(n,a) == 1")
    return _is_strong_prp(n, a)


def _lucas_sequence(n, P, Q, k):
    r"""Return the modular Lucas sequence (U_k, V_k, Q_k).

    Explanation
    ===========

    Given a Lucas sequence defined by P, Q, returns the kth values for
    U and V, along with Q^k, all modulo n. This is intended for use with
    possibly very large values of n and k, where the combinatorial functions
    would be completely unusable.

    .. math ::
        U_k = \begin{cases}
             0 & \text{if } k = 0\\
             1 & \text{if } k = 1\\
             PU_{k-1} - QU_{k-2} & \text{if } k > 1
        \end{cases}\\
        V_k = \begin{cases}
             2 & \text{if } k = 0\\
             P & \text{if } k = 1\\
             PV_{k-1} - QV_{k-2} & \text{if } k > 1
        \end{cases}

    The modular Lucas sequences are used in numerous places in number theory,
    especially in the Lucas compositeness tests and the various n + 1 proofs.

    Parameters
    ==========

    n : int
        n is an odd number greater than or equal to 3
    P : int
    Q : int
        D determined by D = P**2 - 4*Q is non-zero
    k : int
        k is a nonnegative integer

    Returns
    =======

    U, V, Qk : (int, int, int)
        `(U_k \bmod{n}, V_k \bmod{n}, Q^k \bmod{n})`

    Examples
    ========

    >>> from sympy.external.ntheory import _lucas_sequence
    >>> N = 10**2000 + 4561
    >>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
    (0, 2, 1)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lucas_sequence

    """
    if k == 0:
        return (0, 2, 1)
    D = P**2 - 4*Q
    U = 1
    V = P
    Qk = Q % n
    if Q == 1:
        # Optimization for extra strong tests.
        for b in bin(k)[3:]:
            U = (U*V) % n
            V = (V*V - 2) % n
            if b == "1":
                U, V = U*P + V, V*P + U*D
                if U & 1:
                    U += n
                if V & 1:
                    V += n
                U, V = U >> 1, V >> 1
    elif P == 1 and Q == -1:
        # Small optimization for 50% of Selfridge parameters.
        for b in bin(k)[3:]:
            U = (U*V) % n
            if Qk == 1:
                V = (V*V - 2) % n
            else:
                V = (V*V + 2) % n
                Qk = 1
            if b == "1":
                # new_U = (U + V) // 2
                # new_V = (5*U + V) // 2 = 2*U + new_U
                U, V  = U + V, U << 1
                if U & 1:
                    U += n
                U >>= 1
                V += U
                Qk = -1
        Qk %= n
    elif P == 1:
        for b in bin(k)[3:]:
            U = (U*V) % n
            V = (V*V - 2*Qk) % n
            Qk *= Qk
            if b == "1":
                # new_U = (U + V) // 2
                # new_V = new_U - 2*Q*U
                U, V  = U + V, (Q*U) << 1
                if U & 1:
                    U += n
                U >>= 1
                V = U - V
                Qk *= Q
            Qk %= n
    else:
        # The general case with any P and Q.
        for b in bin(k)[3:]:
            U = (U*V) % n
            V = (V*V - 2*Qk) % n
            Qk *= Qk
            if b == "1":
                U, V = U*P + V, V*P + U*D
                if U & 1:
                    U += n
                if V & 1:
                    V += n
                U, V = U >> 1, V >> 1
                Qk *= Q
            Qk %= n
    return (U % n, V % n, Qk)


def is_fibonacci_prp(n, p, q):
    d = p**2 - 4*q
    if d == 0 or p <= 0 or q not in [1, -1]:
        raise ValueError("invalid values for p,q in is_fibonacci_prp()")
    if n < 1:
        raise ValueError("is_fibonacci_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    return _lucas_sequence(n, p, q, n)[1] == p % n


def is_lucas_prp(n, p, q):
    d = p**2 - 4*q
    if d == 0:
        raise ValueError("invalid values for p,q in is_lucas_prp()")
    if n < 1:
        raise ValueError("is_lucas_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    if gcd(n, q*d) not in [1, n]:
        raise ValueError("is_lucas_prp() requires gcd(n,2*q*D) == 1")
    return _lucas_sequence(n, p, q, n - jacobi(d, n))[0] == 0


def _is_selfridge_prp(n):
    """Lucas compositeness test with the Selfridge parameters for n.

    Explanation
    ===========

    The Lucas compositeness test checks whether n is a prime number.
    The test can be run with arbitrary parameters ``P`` and ``Q``, which also change the performance of the test.
    So, which parameters are most effective for running the Lucas compositeness test?
    As an algorithm for determining ``P`` and ``Q``, Selfridge proposed method A [1]_ page 1401
    (Since two methods were proposed, referred to simply as A and B in the paper,
    we will refer to one of them as "method A").

    method A fixes ``P = 1``. Then, ``D`` defined by ``D = P**2 - 4Q`` is varied from 5, -7, 9, -11, 13, and so on,
    with the first ``D`` being ``jacobi(D, n) == -1``. Once ``D`` is determined,
    ``Q`` is determined to be ``(P**2 - D)//4``.

    References
    ==========

    .. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
           Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
           https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
           http://mpqs.free.fr/LucasPseudoprimes.pdf

    """
    for D in range(5, 1_000_000, 2):
        if D & 2: # if D % 4 == 3
            D = -D
        j = jacobi(D, n)
        if j == -1:
            return _lucas_sequence(n, 1, (1-D) // 4, n + 1)[0] == 0
        if j == 0 and D % n:
            return False
        # When j == -1 is hard to find, suspect a square number
        if D == 13 and is_square(n):
            return False
    raise ValueError("appropriate value for D cannot be found in is_selfridge_prp()")


def is_selfridge_prp(n):
    if n < 1:
        raise ValueError("is_selfridge_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    return _is_selfridge_prp(n)


def is_strong_lucas_prp(n, p, q):
    D = p**2 - 4*q
    if D == 0:
        raise ValueError("invalid values for p,q in is_strong_lucas_prp()")
    if n < 1:
        raise ValueError("is_selfridge_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    if gcd(n, q*D) not in [1, n]:
        raise ValueError("is_strong_lucas_prp() requires gcd(n,2*q*D) == 1")
    j = jacobi(D, n)
    s = bit_scan1(n - j)
    U, V, Qk = _lucas_sequence(n, p, q, (n - j) >> s)
    if U == 0 or V == 0:
        return True
    for _ in range(s - 1):
        V = (V*V - 2*Qk) % n
        if V == 0:
            return True
        Qk = pow(Qk, 2, n)
    return False


def _is_strong_selfridge_prp(n):
    for D in range(5, 1_000_000, 2):
        if D & 2: # if D % 4 == 3
            D = -D
        j = jacobi(D, n)
        if j == -1:
            s = bit_scan1(n + 1)
            U, V, Qk = _lucas_sequence(n, 1, (1-D) // 4, (n + 1) >> s)
            if U == 0 or V == 0:
                return True
            for _ in range(s - 1):
                V = (V*V - 2*Qk) % n
                if V == 0:
                    return True
                Qk = pow(Qk, 2, n)
            return False
        if j == 0 and D % n:
            return False
        # When j == -1 is hard to find, suspect a square number
        if D == 13 and is_square(n):
            return False
    raise ValueError("appropriate value for D cannot be found in is_strong_selfridge_prp()")


def is_strong_selfridge_prp(n):
    if n < 1:
        raise ValueError("is_strong_selfridge_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    return _is_strong_selfridge_prp(n)


def is_bpsw_prp(n):
    if n < 1:
        raise ValueError("is_bpsw_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    return _is_strong_prp(n, 2) and _is_selfridge_prp(n)


def is_strong_bpsw_prp(n):
    if n < 1:
        raise ValueError("is_strong_bpsw_prp() requires 'n' be greater than 0")
    if n == 1:
        return False
    if n % 2 == 0:
        return n == 2
    return _is_strong_prp(n, 2) and _is_strong_selfridge_prp(n)