Spaces:
Sleeping
Sleeping
from typing import Tuple as tTuple | |
from sympy.calculus.singularities import is_decreasing | |
from sympy.calculus.accumulationbounds import AccumulationBounds | |
from .expr_with_intlimits import ExprWithIntLimits | |
from .expr_with_limits import AddWithLimits | |
from .gosper import gosper_sum | |
from sympy.core.expr import Expr | |
from sympy.core.add import Add | |
from sympy.core.containers import Tuple | |
from sympy.core.function import Derivative, expand | |
from sympy.core.mul import Mul | |
from sympy.core.numbers import Float, _illegal | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.core.sorting import ordered | |
from sympy.core.symbol import Dummy, Wild, Symbol, symbols | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.functions.combinatorial.numbers import bernoulli, harmonic | |
from sympy.functions.elementary.exponential import exp, log | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import cot, csc | |
from sympy.functions.special.hyper import hyper | |
from sympy.functions.special.tensor_functions import KroneckerDelta | |
from sympy.functions.special.zeta_functions import zeta | |
from sympy.integrals.integrals import Integral | |
from sympy.logic.boolalg import And | |
from sympy.polys.partfrac import apart | |
from sympy.polys.polyerrors import PolynomialError, PolificationFailed | |
from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor | |
from sympy.polys.rationaltools import together | |
from sympy.series.limitseq import limit_seq | |
from sympy.series.order import O | |
from sympy.series.residues import residue | |
from sympy.sets.sets import FiniteSet, Interval | |
from sympy.utilities.iterables import sift | |
import itertools | |
class Sum(AddWithLimits, ExprWithIntLimits): | |
r""" | |
Represents unevaluated summation. | |
Explanation | |
=========== | |
``Sum`` represents a finite or infinite series, with the first argument | |
being the general form of terms in the series, and the second argument | |
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking | |
all integer values from ``start`` through ``end``. In accordance with | |
long-standing mathematical convention, the end term is included in the | |
summation. | |
Finite sums | |
=========== | |
For finite sums (and sums with symbolic limits assumed to be finite) we | |
follow the summation convention described by Karr [1], especially | |
definition 3 of section 1.4. The sum: | |
.. math:: | |
\sum_{m \leq i < n} f(i) | |
has *the obvious meaning* for `m < n`, namely: | |
.. math:: | |
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1) | |
with the upper limit value `f(n)` excluded. The sum over an empty set is | |
zero if and only if `m = n`: | |
.. math:: | |
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n | |
Finally, for all other sums over empty sets we assume the following | |
definition: | |
.. math:: | |
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n | |
It is important to note that Karr defines all sums with the upper | |
limit being exclusive. This is in contrast to the usual mathematical notation, | |
but does not affect the summation convention. Indeed we have: | |
.. math:: | |
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i) | |
where the difference in notation is intentional to emphasize the meaning, | |
with limits typeset on the top being inclusive. | |
Examples | |
======== | |
>>> from sympy.abc import i, k, m, n, x | |
>>> from sympy import Sum, factorial, oo, IndexedBase, Function | |
>>> Sum(k, (k, 1, m)) | |
Sum(k, (k, 1, m)) | |
>>> Sum(k, (k, 1, m)).doit() | |
m**2/2 + m/2 | |
>>> Sum(k**2, (k, 1, m)) | |
Sum(k**2, (k, 1, m)) | |
>>> Sum(k**2, (k, 1, m)).doit() | |
m**3/3 + m**2/2 + m/6 | |
>>> Sum(x**k, (k, 0, oo)) | |
Sum(x**k, (k, 0, oo)) | |
>>> Sum(x**k, (k, 0, oo)).doit() | |
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True)) | |
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit() | |
exp(x) | |
Here are examples to do summation with symbolic indices. You | |
can use either Function of IndexedBase classes: | |
>>> f = Function('f') | |
>>> Sum(f(n), (n, 0, 3)).doit() | |
f(0) + f(1) + f(2) + f(3) | |
>>> Sum(f(n), (n, 0, oo)).doit() | |
Sum(f(n), (n, 0, oo)) | |
>>> f = IndexedBase('f') | |
>>> Sum(f[n]**2, (n, 0, 3)).doit() | |
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2 | |
An example showing that the symbolic result of a summation is still | |
valid for seemingly nonsensical values of the limits. Then the Karr | |
convention allows us to give a perfectly valid interpretation to | |
those sums by interchanging the limits according to the above rules: | |
>>> S = Sum(i, (i, 1, n)).doit() | |
>>> S | |
n**2/2 + n/2 | |
>>> S.subs(n, -4) | |
6 | |
>>> Sum(i, (i, 1, -4)).doit() | |
6 | |
>>> Sum(-i, (i, -3, 0)).doit() | |
6 | |
An explicit example of the Karr summation convention: | |
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit() | |
>>> S1 | |
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6 | |
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit() | |
>>> S2 | |
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6 | |
>>> S1 + S2 | |
0 | |
>>> S3 = Sum(i, (i, m, m-1)).doit() | |
>>> S3 | |
0 | |
See Also | |
======== | |
summation | |
Product, sympy.concrete.products.product | |
References | |
========== | |
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, | |
Volume 28 Issue 2, April 1981, Pages 305-350 | |
https://dl.acm.org/doi/10.1145/322248.322255 | |
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation | |
.. [3] https://en.wikipedia.org/wiki/Empty_sum | |
""" | |
__slots__ = () | |
limits: tTuple[tTuple[Symbol, Expr, Expr]] | |
def __new__(cls, function, *symbols, **assumptions): | |
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) | |
if not hasattr(obj, 'limits'): | |
return obj | |
if any(len(l) != 3 or None in l for l in obj.limits): | |
raise ValueError('Sum requires values for lower and upper bounds.') | |
return obj | |
def _eval_is_zero(self): | |
# a Sum is only zero if its function is zero or if all terms | |
# cancel out. This only answers whether the summand is zero; if | |
# not then None is returned since we don't analyze whether all | |
# terms cancel out. | |
if self.function.is_zero or self.has_empty_sequence: | |
return True | |
def _eval_is_extended_real(self): | |
if self.has_empty_sequence: | |
return True | |
return self.function.is_extended_real | |
def _eval_is_positive(self): | |
if self.has_finite_limits and self.has_reversed_limits is False: | |
return self.function.is_positive | |
def _eval_is_negative(self): | |
if self.has_finite_limits and self.has_reversed_limits is False: | |
return self.function.is_negative | |
def _eval_is_finite(self): | |
if self.has_finite_limits and self.function.is_finite: | |
return True | |
def doit(self, **hints): | |
if hints.get('deep', True): | |
f = self.function.doit(**hints) | |
else: | |
f = self.function | |
# first make sure any definite limits have summation | |
# variables with matching assumptions | |
reps = {} | |
for xab in self.limits: | |
d = _dummy_with_inherited_properties_concrete(xab) | |
if d: | |
reps[xab[0]] = d | |
if reps: | |
undo = {v: k for k, v in reps.items()} | |
did = self.xreplace(reps).doit(**hints) | |
if isinstance(did, tuple): # when separate=True | |
did = tuple([i.xreplace(undo) for i in did]) | |
elif did is not None: | |
did = did.xreplace(undo) | |
else: | |
did = self | |
return did | |
if self.function.is_Matrix: | |
expanded = self.expand() | |
if self != expanded: | |
return expanded.doit() | |
return _eval_matrix_sum(self) | |
for n, limit in enumerate(self.limits): | |
i, a, b = limit | |
dif = b - a | |
if dif == -1: | |
# Any summation over an empty set is zero | |
return S.Zero | |
if dif.is_integer and dif.is_negative: | |
a, b = b + 1, a - 1 | |
f = -f | |
newf = eval_sum(f, (i, a, b)) | |
if newf is None: | |
if f == self.function: | |
zeta_function = self.eval_zeta_function(f, (i, a, b)) | |
if zeta_function is not None: | |
return zeta_function | |
return self | |
else: | |
return self.func(f, *self.limits[n:]) | |
f = newf | |
if hints.get('deep', True): | |
# eval_sum could return partially unevaluated | |
# result with Piecewise. In this case we won't | |
# doit() recursively. | |
if not isinstance(f, Piecewise): | |
return f.doit(**hints) | |
return f | |
def eval_zeta_function(self, f, limits): | |
""" | |
Check whether the function matches with the zeta function. | |
If it matches, then return a `Piecewise` expression because | |
zeta function does not converge unless `s > 1` and `q > 0` | |
""" | |
i, a, b = limits | |
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i]) | |
result = f.match((w * i + y) ** (-z)) | |
if result is not None and b is S.Infinity: | |
coeff = 1 / result[w] ** result[z] | |
s = result[z] | |
q = result[y] / result[w] + a | |
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True)) | |
def _eval_derivative(self, x): | |
""" | |
Differentiate wrt x as long as x is not in the free symbols of any of | |
the upper or lower limits. | |
Explanation | |
=========== | |
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a` | |
since the value of the sum is discontinuous in `a`. In a case | |
involving a limit variable, the unevaluated derivative is returned. | |
""" | |
# diff already confirmed that x is in the free symbols of self, but we | |
# don't want to differentiate wrt any free symbol in the upper or lower | |
# limits | |
# XXX remove this test for free_symbols when the default _eval_derivative is in | |
if isinstance(x, Symbol) and x not in self.free_symbols: | |
return S.Zero | |
# get limits and the function | |
f, limits = self.function, list(self.limits) | |
limit = limits.pop(-1) | |
if limits: # f is the argument to a Sum | |
f = self.func(f, *limits) | |
_, a, b = limit | |
if x in a.free_symbols or x in b.free_symbols: | |
return None | |
df = Derivative(f, x, evaluate=True) | |
rv = self.func(df, limit) | |
return rv | |
def _eval_difference_delta(self, n, step): | |
k, _, upper = self.args[-1] | |
new_upper = upper.subs(n, n + step) | |
if len(self.args) == 2: | |
f = self.args[0] | |
else: | |
f = self.func(*self.args[:-1]) | |
return Sum(f, (k, upper + 1, new_upper)).doit() | |
def _eval_simplify(self, **kwargs): | |
function = self.function | |
if kwargs.get('deep', True): | |
function = function.simplify(**kwargs) | |
# split the function into adds | |
terms = Add.make_args(expand(function)) | |
s_t = [] # Sum Terms | |
o_t = [] # Other Terms | |
for term in terms: | |
if term.has(Sum): | |
# if there is an embedded sum here | |
# it is of the form x * (Sum(whatever)) | |
# hence we make a Mul out of it, and simplify all interior sum terms | |
subterms = Mul.make_args(expand(term)) | |
out_terms = [] | |
for subterm in subterms: | |
# go through each term | |
if isinstance(subterm, Sum): | |
# if it's a sum, simplify it | |
out_terms.append(subterm._eval_simplify(**kwargs)) | |
else: | |
# otherwise, add it as is | |
out_terms.append(subterm) | |
# turn it back into a Mul | |
s_t.append(Mul(*out_terms)) | |
else: | |
o_t.append(term) | |
# next try to combine any interior sums for further simplification | |
from sympy.simplify.simplify import factor_sum, sum_combine | |
result = Add(sum_combine(s_t), *o_t) | |
return factor_sum(result, limits=self.limits) | |
def is_convergent(self): | |
r""" | |
Checks for the convergence of a Sum. | |
Explanation | |
=========== | |
We divide the study of convergence of infinite sums and products in | |
two parts. | |
First Part: | |
One part is the question whether all the terms are well defined, i.e., | |
they are finite in a sum and also non-zero in a product. Zero | |
is the analogy of (minus) infinity in products as | |
:math:`e^{-\infty} = 0`. | |
Second Part: | |
The second part is the question of convergence after infinities, | |
and zeros in products, have been omitted assuming that their number | |
is finite. This means that we only consider the tail of the sum or | |
product, starting from some point after which all terms are well | |
defined. | |
For example, in a sum of the form: | |
.. math:: | |
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b} | |
where a and b are numbers. The routine will return true, even if there | |
are infinities in the term sequence (at most two). An analogous | |
product would be: | |
.. math:: | |
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}} | |
This is how convergence is interpreted. It is concerned with what | |
happens at the limit. Finding the bad terms is another independent | |
matter. | |
Note: It is responsibility of user to see that the sum or product | |
is well defined. | |
There are various tests employed to check the convergence like | |
divergence test, root test, integral test, alternating series test, | |
comparison tests, Dirichlet tests. It returns true if Sum is convergent | |
and false if divergent and NotImplementedError if it cannot be checked. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Convergence_tests | |
Examples | |
======== | |
>>> from sympy import factorial, S, Sum, Symbol, oo | |
>>> n = Symbol('n', integer=True) | |
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent() | |
True | |
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() | |
False | |
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() | |
False | |
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() | |
True | |
See Also | |
======== | |
Sum.is_absolutely_convergent | |
sympy.concrete.products.Product.is_convergent | |
""" | |
p, q, r = symbols('p q r', cls=Wild) | |
sym = self.limits[0][0] | |
lower_limit = self.limits[0][1] | |
upper_limit = self.limits[0][2] | |
sequence_term = self.function.simplify() | |
if len(sequence_term.free_symbols) > 1: | |
raise NotImplementedError("convergence checking for more than one symbol " | |
"containing series is not handled") | |
if lower_limit.is_finite and upper_limit.is_finite: | |
return S.true | |
# transform sym -> -sym and swap the upper_limit = S.Infinity | |
# and lower_limit = - upper_limit | |
if lower_limit is S.NegativeInfinity: | |
if upper_limit is S.Infinity: | |
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \ | |
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent() | |
from sympy.simplify.simplify import simplify | |
sequence_term = simplify(sequence_term.xreplace({sym: -sym})) | |
lower_limit = -upper_limit | |
upper_limit = S.Infinity | |
sym_ = Dummy(sym.name, integer=True, positive=True) | |
sequence_term = sequence_term.xreplace({sym: sym_}) | |
sym = sym_ | |
interval = Interval(lower_limit, upper_limit) | |
# Piecewise function handle | |
if sequence_term.is_Piecewise: | |
for func, cond in sequence_term.args: | |
# see if it represents something going to oo | |
if cond == True or cond.as_set().sup is S.Infinity: | |
s = Sum(func, (sym, lower_limit, upper_limit)) | |
return s.is_convergent() | |
return S.true | |
### -------- Divergence test ----------- ### | |
try: | |
lim_val = limit_seq(sequence_term, sym) | |
if lim_val is not None and lim_val.is_zero is False: | |
return S.false | |
except NotImplementedError: | |
pass | |
try: | |
lim_val_abs = limit_seq(abs(sequence_term), sym) | |
if lim_val_abs is not None and lim_val_abs.is_zero is False: | |
return S.false | |
except NotImplementedError: | |
pass | |
order = O(sequence_term, (sym, S.Infinity)) | |
### --------- p-series test (1/n**p) ---------- ### | |
p_series_test = order.expr.match(sym**p) | |
if p_series_test is not None: | |
if p_series_test[p] < -1: | |
return S.true | |
if p_series_test[p] >= -1: | |
return S.false | |
### ------------- comparison test ------------- ### | |
# 1/(n**p*log(n)**q*log(log(n))**r) comparison | |
n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or | |
order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r))) | |
if n_log_test is not None: | |
if (n_log_test[p] > 1 or | |
(n_log_test[p] == 1 and n_log_test[q] > 1) or | |
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)): | |
return S.true | |
return S.false | |
### ------------- Limit comparison test -----------### | |
# (1/n) comparison | |
try: | |
lim_comp = limit_seq(sym*sequence_term, sym) | |
if lim_comp is not None and lim_comp.is_number and lim_comp > 0: | |
return S.false | |
except NotImplementedError: | |
pass | |
### ----------- ratio test ---------------- ### | |
next_sequence_term = sequence_term.xreplace({sym: sym + 1}) | |
from sympy.simplify.combsimp import combsimp | |
from sympy.simplify.powsimp import powsimp | |
ratio = combsimp(powsimp(next_sequence_term/sequence_term)) | |
try: | |
lim_ratio = limit_seq(ratio, sym) | |
if lim_ratio is not None and lim_ratio.is_number: | |
if abs(lim_ratio) > 1: | |
return S.false | |
if abs(lim_ratio) < 1: | |
return S.true | |
except NotImplementedError: | |
lim_ratio = None | |
### ---------- Raabe's test -------------- ### | |
if lim_ratio == 1: # ratio test inconclusive | |
test_val = sym*(sequence_term/ | |
sequence_term.subs(sym, sym + 1) - 1) | |
test_val = test_val.gammasimp() | |
try: | |
lim_val = limit_seq(test_val, sym) | |
if lim_val is not None and lim_val.is_number: | |
if lim_val > 1: | |
return S.true | |
if lim_val < 1: | |
return S.false | |
except NotImplementedError: | |
pass | |
### ----------- root test ---------------- ### | |
# lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity) | |
try: | |
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym) | |
if lim_evaluated is not None and lim_evaluated.is_number: | |
if lim_evaluated < 1: | |
return S.true | |
if lim_evaluated > 1: | |
return S.false | |
except NotImplementedError: | |
pass | |
### ------------- alternating series test ----------- ### | |
dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q) | |
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval): | |
return S.true | |
### ------------- integral test -------------- ### | |
check_interval = None | |
from sympy.solvers.solveset import solveset | |
maxima = solveset(sequence_term.diff(sym), sym, interval) | |
if not maxima: | |
check_interval = interval | |
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number: | |
check_interval = Interval(maxima.sup, interval.sup) | |
if (check_interval is not None and | |
(is_decreasing(sequence_term, check_interval) or | |
is_decreasing(-sequence_term, check_interval))): | |
integral_val = Integral( | |
sequence_term, (sym, lower_limit, upper_limit)) | |
try: | |
integral_val_evaluated = integral_val.doit() | |
if integral_val_evaluated.is_number: | |
return S(integral_val_evaluated.is_finite) | |
except NotImplementedError: | |
pass | |
### ----- Dirichlet and bounded times convergent tests ----- ### | |
# TODO | |
# | |
# Dirichlet_test | |
# https://en.wikipedia.org/wiki/Dirichlet%27s_test | |
# | |
# Bounded times convergent test | |
# It is based on comparison theorems for series. | |
# In particular, if the general term of a series can | |
# be written as a product of two terms a_n and b_n | |
# and if a_n is bounded and if Sum(b_n) is absolutely | |
# convergent, then the original series Sum(a_n * b_n) | |
# is absolutely convergent and so convergent. | |
# | |
# The following code can grows like 2**n where n is the | |
# number of args in order.expr | |
# Possibly combined with the potentially slow checks | |
# inside the loop, could make this test extremely slow | |
# for larger summation expressions. | |
if order.expr.is_Mul: | |
args = order.expr.args | |
argset = set(args) | |
### -------------- Dirichlet tests -------------- ### | |
m = Dummy('m', integer=True) | |
def _dirichlet_test(g_n): | |
try: | |
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m) | |
if ing_val is not None and ing_val.is_finite: | |
return S.true | |
except NotImplementedError: | |
pass | |
### -------- bounded times convergent test ---------### | |
def _bounded_convergent_test(g1_n, g2_n): | |
try: | |
lim_val = limit_seq(g1_n, sym) | |
if lim_val is not None and (lim_val.is_finite or ( | |
isinstance(lim_val, AccumulationBounds) | |
and (lim_val.max - lim_val.min).is_finite)): | |
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent(): | |
return S.true | |
except NotImplementedError: | |
pass | |
for n in range(1, len(argset)): | |
for a_tuple in itertools.combinations(args, n): | |
b_set = argset - set(a_tuple) | |
a_n = Mul(*a_tuple) | |
b_n = Mul(*b_set) | |
if is_decreasing(a_n, interval): | |
dirich = _dirichlet_test(b_n) | |
if dirich is not None: | |
return dirich | |
bc_test = _bounded_convergent_test(a_n, b_n) | |
if bc_test is not None: | |
return bc_test | |
_sym = self.limits[0][0] | |
sequence_term = sequence_term.xreplace({sym: _sym}) | |
raise NotImplementedError("The algorithm to find the Sum convergence of %s " | |
"is not yet implemented" % (sequence_term)) | |
def is_absolutely_convergent(self): | |
""" | |
Checks for the absolute convergence of an infinite series. | |
Same as checking convergence of absolute value of sequence_term of | |
an infinite series. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence | |
Examples | |
======== | |
>>> from sympy import Sum, Symbol, oo | |
>>> n = Symbol('n', integer=True) | |
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() | |
False | |
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() | |
True | |
See Also | |
======== | |
Sum.is_convergent | |
""" | |
return Sum(abs(self.function), self.limits).is_convergent() | |
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): | |
""" | |
Return an Euler-Maclaurin approximation of self, where m is the | |
number of leading terms to sum directly and n is the number of | |
terms in the tail. | |
With m = n = 0, this is simply the corresponding integral | |
plus a first-order endpoint correction. | |
Returns (s, e) where s is the Euler-Maclaurin approximation | |
and e is the estimated error (taken to be the magnitude of | |
the first omitted term in the tail): | |
>>> from sympy.abc import k, a, b | |
>>> from sympy import Sum | |
>>> Sum(1/k, (k, 2, 5)).doit().evalf() | |
1.28333333333333 | |
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() | |
>>> s | |
-log(2) + 7/20 + log(5) | |
>>> from sympy import sstr | |
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) | |
(1.26629073187415, 0.0175000000000000) | |
The endpoints may be symbolic: | |
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() | |
>>> s | |
-log(a) + log(b) + 1/(2*b) + 1/(2*a) | |
>>> e | |
Abs(1/(12*b**2) - 1/(12*a**2)) | |
If the function is a polynomial of degree at most 2n+1, the | |
Euler-Maclaurin formula becomes exact (and e = 0 is returned): | |
>>> Sum(k, (k, 2, b)).euler_maclaurin() | |
(b**2/2 + b/2 - 1, 0) | |
>>> Sum(k, (k, 2, b)).doit() | |
b**2/2 + b/2 - 1 | |
With a nonzero eps specified, the summation is ended | |
as soon as the remainder term is less than the epsilon. | |
""" | |
m = int(m) | |
n = int(n) | |
f = self.function | |
if len(self.limits) != 1: | |
raise ValueError("More than 1 limit") | |
i, a, b = self.limits[0] | |
if (a > b) == True: | |
if a - b == 1: | |
return S.Zero, S.Zero | |
a, b = b + 1, a - 1 | |
f = -f | |
s = S.Zero | |
if m: | |
if b.is_Integer and a.is_Integer: | |
m = min(m, b - a + 1) | |
if not eps or f.is_polynomial(i): | |
s = Add(*[f.subs(i, a + k) for k in range(m)]) | |
else: | |
term = f.subs(i, a) | |
if term: | |
test = abs(term.evalf(3)) < eps | |
if test == True: | |
return s, abs(term) | |
elif not (test == False): | |
# a symbolic Relational class, can't go further | |
return term, S.Zero | |
s = term | |
for k in range(1, m): | |
term = f.subs(i, a + k) | |
if abs(term.evalf(3)) < eps and term != 0: | |
return s, abs(term) | |
s += term | |
if b - a + 1 == m: | |
return s, S.Zero | |
a += m | |
x = Dummy('x') | |
I = Integral(f.subs(i, x), (x, a, b)) | |
if eval_integral: | |
I = I.doit() | |
s += I | |
def fpoint(expr): | |
if b is S.Infinity: | |
return expr.subs(i, a), 0 | |
return expr.subs(i, a), expr.subs(i, b) | |
fa, fb = fpoint(f) | |
iterm = (fa + fb)/2 | |
g = f.diff(i) | |
for k in range(1, n + 2): | |
ga, gb = fpoint(g) | |
term = bernoulli(2*k)/factorial(2*k)*(gb - ga) | |
if k > n: | |
break | |
if eps and term: | |
term_evalf = term.evalf(3) | |
if term_evalf is S.NaN: | |
return S.NaN, S.NaN | |
if abs(term_evalf) < eps: | |
break | |
s += term | |
g = g.diff(i, 2, simplify=False) | |
return s + iterm, abs(term) | |
def reverse_order(self, *indices): | |
""" | |
Reverse the order of a limit in a Sum. | |
Explanation | |
=========== | |
``reverse_order(self, *indices)`` reverses some limits in the expression | |
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in | |
the argument ``indices`` specify some indices whose limits get reversed. | |
These selectors are either variable names or numerical indices counted | |
starting from the inner-most limit tuple. | |
Examples | |
======== | |
>>> from sympy import Sum | |
>>> from sympy.abc import x, y, a, b, c, d | |
>>> Sum(x, (x, 0, 3)).reverse_order(x) | |
Sum(-x, (x, 4, -1)) | |
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y) | |
Sum(x*y, (x, 6, 0), (y, 7, -1)) | |
>>> Sum(x, (x, a, b)).reverse_order(x) | |
Sum(-x, (x, b + 1, a - 1)) | |
>>> Sum(x, (x, a, b)).reverse_order(0) | |
Sum(-x, (x, b + 1, a - 1)) | |
While one should prefer variable names when specifying which limits | |
to reverse, the index counting notation comes in handy in case there | |
are several symbols with the same name. | |
>>> S = Sum(x**2, (x, a, b), (x, c, d)) | |
>>> S | |
Sum(x**2, (x, a, b), (x, c, d)) | |
>>> S0 = S.reverse_order(0) | |
>>> S0 | |
Sum(-x**2, (x, b + 1, a - 1), (x, c, d)) | |
>>> S1 = S0.reverse_order(1) | |
>>> S1 | |
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1)) | |
Of course we can mix both notations: | |
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) | |
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) | |
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) | |
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) | |
See Also | |
======== | |
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit, | |
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder | |
References | |
========== | |
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, | |
Volume 28 Issue 2, April 1981, Pages 305-350 | |
https://dl.acm.org/doi/10.1145/322248.322255 | |
""" | |
l_indices = list(indices) | |
for i, indx in enumerate(l_indices): | |
if not isinstance(indx, int): | |
l_indices[i] = self.index(indx) | |
e = 1 | |
limits = [] | |
for i, limit in enumerate(self.limits): | |
l = limit | |
if i in l_indices: | |
e = -e | |
l = (limit[0], limit[2] + 1, limit[1] - 1) | |
limits.append(l) | |
return Sum(e * self.function, *limits) | |
def _eval_rewrite_as_Product(self, *args, **kwargs): | |
from sympy.concrete.products import Product | |
if self.function.is_extended_real: | |
return log(Product(exp(self.function), *self.limits)) | |
def summation(f, *symbols, **kwargs): | |
r""" | |
Compute the summation of f with respect to symbols. | |
Explanation | |
=========== | |
The notation for symbols is similar to the notation used in Integral. | |
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, | |
i.e., | |
:: | |
b | |
____ | |
\ ` | |
summation(f, (i, a, b)) = ) f | |
/___, | |
i = a | |
If it cannot compute the sum, it returns an unevaluated Sum object. | |
Repeated sums can be computed by introducing additional symbols tuples:: | |
Examples | |
======== | |
>>> from sympy import summation, oo, symbols, log | |
>>> i, n, m = symbols('i n m', integer=True) | |
>>> summation(2*i - 1, (i, 1, n)) | |
n**2 | |
>>> summation(1/2**i, (i, 0, oo)) | |
2 | |
>>> summation(1/log(n)**n, (n, 2, oo)) | |
Sum(log(n)**(-n), (n, 2, oo)) | |
>>> summation(i, (i, 0, n), (n, 0, m)) | |
m**3/6 + m**2/2 + m/3 | |
>>> from sympy.abc import x | |
>>> from sympy import factorial | |
>>> summation(x**n/factorial(n), (n, 0, oo)) | |
exp(x) | |
See Also | |
======== | |
Sum | |
Product, sympy.concrete.products.product | |
""" | |
return Sum(f, *symbols, **kwargs).doit(deep=False) | |
def telescopic_direct(L, R, n, limits): | |
""" | |
Returns the direct summation of the terms of a telescopic sum | |
Explanation | |
=========== | |
L is the term with lower index | |
R is the term with higher index | |
n difference between the indexes of L and R | |
Examples | |
======== | |
>>> from sympy.concrete.summations import telescopic_direct | |
>>> from sympy.abc import k, a, b | |
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b)) | |
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a | |
""" | |
(i, a, b) = limits | |
return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)]) | |
def telescopic(L, R, limits): | |
''' | |
Tries to perform the summation using the telescopic property. | |
Return None if not possible. | |
''' | |
(i, a, b) = limits | |
if L.is_Add or R.is_Add: | |
return None | |
# We want to solve(L.subs(i, i + m) + R, m) | |
# First we try a simple match since this does things that | |
# solve doesn't do, e.g. solve(cos(k+m)-cos(k), m) gives | |
# a more complicated solution than m == 0. | |
k = Wild("k") | |
sol = (-R).match(L.subs(i, i + k)) | |
s = None | |
if sol and k in sol: | |
s = sol[k] | |
if not (s.is_Integer and L.subs(i, i + s) + R == 0): | |
# invalid match or match didn't work | |
s = None | |
# But there are things that match doesn't do that solve | |
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1 | |
if s is None: | |
m = Dummy('m') | |
try: | |
from sympy.solvers.solvers import solve | |
sol = solve(L.subs(i, i + m) + R, m) or [] | |
except NotImplementedError: | |
return None | |
sol = [si for si in sol if si.is_Integer and | |
(L.subs(i, i + si) + R).expand().is_zero] | |
if len(sol) != 1: | |
return None | |
s = sol[0] | |
if s < 0: | |
return telescopic_direct(R, L, abs(s), (i, a, b)) | |
elif s > 0: | |
return telescopic_direct(L, R, s, (i, a, b)) | |
def eval_sum(f, limits): | |
(i, a, b) = limits | |
if f.is_zero: | |
return S.Zero | |
if i not in f.free_symbols: | |
return f*(b - a + 1) | |
if a == b: | |
return f.subs(i, a) | |
if isinstance(f, Piecewise): | |
if not any(i in arg.args[1].free_symbols for arg in f.args): | |
# Piecewise conditions do not depend on the dummy summation variable, | |
# therefore we can fold: Sum(Piecewise((e, c), ...), limits) | |
# --> Piecewise((Sum(e, limits), c), ...) | |
newargs = [] | |
for arg in f.args: | |
newexpr = eval_sum(arg.expr, limits) | |
if newexpr is None: | |
return None | |
newargs.append((newexpr, arg.cond)) | |
return f.func(*newargs) | |
if f.has(KroneckerDelta): | |
from .delta import deltasummation, _has_simple_delta | |
f = f.replace( | |
lambda x: isinstance(x, Sum), | |
lambda x: x.factor() | |
) | |
if _has_simple_delta(f, limits[0]): | |
return deltasummation(f, limits) | |
dif = b - a | |
definite = dif.is_Integer | |
# Doing it directly may be faster if there are very few terms. | |
if definite and (dif < 100): | |
return eval_sum_direct(f, (i, a, b)) | |
if isinstance(f, Piecewise): | |
return None | |
# Try to do it symbolically. Even when the number of terms is | |
# known, this can save time when b-a is big. | |
value = eval_sum_symbolic(f.expand(), (i, a, b)) | |
if value is not None: | |
return value | |
# Do it directly | |
if definite: | |
return eval_sum_direct(f, (i, a, b)) | |
def eval_sum_direct(expr, limits): | |
""" | |
Evaluate expression directly, but perform some simple checks first | |
to possibly result in a smaller expression and faster execution. | |
""" | |
(i, a, b) = limits | |
dif = b - a | |
# Linearity | |
if expr.is_Mul: | |
# Try factor out everything not including i | |
without_i, with_i = expr.as_independent(i) | |
if without_i != 1: | |
s = eval_sum_direct(with_i, (i, a, b)) | |
if s: | |
r = without_i*s | |
if r is not S.NaN: | |
return r | |
else: | |
# Try term by term | |
L, R = expr.as_two_terms() | |
if not L.has(i): | |
sR = eval_sum_direct(R, (i, a, b)) | |
if sR: | |
return L*sR | |
if not R.has(i): | |
sL = eval_sum_direct(L, (i, a, b)) | |
if sL: | |
return sL*R | |
# do this whether its an Add or Mul | |
# e.g. apart(1/(25*i**2 + 45*i + 14)) and | |
# apart(1/((5*i + 2)*(5*i + 7))) -> | |
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2)) | |
try: | |
expr = apart(expr, i) # see if it becomes an Add | |
except PolynomialError: | |
pass | |
if expr.is_Add: | |
# Try factor out everything not including i | |
without_i, with_i = expr.as_independent(i) | |
if without_i != 0: | |
s = eval_sum_direct(with_i, (i, a, b)) | |
if s: | |
r = without_i*(dif + 1) + s | |
if r is not S.NaN: | |
return r | |
else: | |
# Try term by term | |
L, R = expr.as_two_terms() | |
lsum = eval_sum_direct(L, (i, a, b)) | |
rsum = eval_sum_direct(R, (i, a, b)) | |
if None not in (lsum, rsum): | |
r = lsum + rsum | |
if r is not S.NaN: | |
return r | |
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)]) | |
def eval_sum_symbolic(f, limits): | |
f_orig = f | |
(i, a, b) = limits | |
if not f.has(i): | |
return f*(b - a + 1) | |
# Linearity | |
if f.is_Mul: | |
# Try factor out everything not including i | |
without_i, with_i = f.as_independent(i) | |
if without_i != 1: | |
s = eval_sum_symbolic(with_i, (i, a, b)) | |
if s: | |
r = without_i*s | |
if r is not S.NaN: | |
return r | |
else: | |
# Try term by term | |
L, R = f.as_two_terms() | |
if not L.has(i): | |
sR = eval_sum_symbolic(R, (i, a, b)) | |
if sR: | |
return L*sR | |
if not R.has(i): | |
sL = eval_sum_symbolic(L, (i, a, b)) | |
if sL: | |
return sL*R | |
# do this whether its an Add or Mul | |
# e.g. apart(1/(25*i**2 + 45*i + 14)) and | |
# apart(1/((5*i + 2)*(5*i + 7))) -> | |
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2)) | |
try: | |
f = apart(f, i) | |
except PolynomialError: | |
pass | |
if f.is_Add: | |
L, R = f.as_two_terms() | |
lrsum = telescopic(L, R, (i, a, b)) | |
if lrsum: | |
return lrsum | |
# Try factor out everything not including i | |
without_i, with_i = f.as_independent(i) | |
if without_i != 0: | |
s = eval_sum_symbolic(with_i, (i, a, b)) | |
if s: | |
r = without_i*(b - a + 1) + s | |
if r is not S.NaN: | |
return r | |
else: | |
# Try term by term | |
lsum = eval_sum_symbolic(L, (i, a, b)) | |
rsum = eval_sum_symbolic(R, (i, a, b)) | |
if None not in (lsum, rsum): | |
r = lsum + rsum | |
if r is not S.NaN: | |
return r | |
# Polynomial terms with Faulhaber's formula | |
n = Wild('n') | |
result = f.match(i**n) | |
if result is not None: | |
n = result[n] | |
if n.is_Integer: | |
if n >= 0: | |
if (b is S.Infinity and a is not S.NegativeInfinity) or \ | |
(a is S.NegativeInfinity and b is not S.Infinity): | |
return S.Infinity | |
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand() | |
elif a.is_Integer and a >= 1: | |
if n == -1: | |
return harmonic(b) - harmonic(a - 1) | |
else: | |
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n)) | |
if not (a.has(S.Infinity, S.NegativeInfinity) or | |
b.has(S.Infinity, S.NegativeInfinity)): | |
# Geometric terms | |
c1 = Wild('c1', exclude=[i]) | |
c2 = Wild('c2', exclude=[i]) | |
c3 = Wild('c3', exclude=[i]) | |
wexp = Wild('wexp') | |
# Here we first attempt powsimp on f for easier matching with the | |
# exponential pattern, and attempt expansion on the exponent for easier | |
# matching with the linear pattern. | |
e = f.powsimp().match(c1 ** wexp) | |
if e is not None: | |
e_exp = e.pop(wexp).expand().match(c2*i + c3) | |
if e_exp is not None: | |
e.update(e_exp) | |
p = (c1**c3).subs(e) | |
q = (c1**c2).subs(e) | |
r = p*(q**a - q**(b + 1))/(1 - q) | |
l = p*(b - a + 1) | |
return Piecewise((l, Eq(q, S.One)), (r, True)) | |
r = gosper_sum(f, (i, a, b)) | |
if isinstance(r, (Mul,Add)): | |
from sympy.simplify.radsimp import denom | |
from sympy.solvers.solvers import solve | |
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols | |
den = denom(together(r)) | |
den_sym = non_limit & den.free_symbols | |
args = [] | |
for v in ordered(den_sym): | |
try: | |
s = solve(den, v) | |
m = Eq(v, s[0]) if s else S.false | |
if m != False: | |
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m)) | |
break | |
except NotImplementedError: | |
continue | |
args.append((r, True)) | |
return Piecewise(*args) | |
if r not in (None, S.NaN): | |
return r | |
h = eval_sum_hyper(f_orig, (i, a, b)) | |
if h is not None: | |
return h | |
r = eval_sum_residue(f_orig, (i, a, b)) | |
if r is not None: | |
return r | |
factored = f_orig.factor() | |
if factored != f_orig: | |
return eval_sum_symbolic(factored, (i, a, b)) | |
def _eval_sum_hyper(f, i, a): | |
""" Returns (res, cond). Sums from a to oo. """ | |
if a != 0: | |
return _eval_sum_hyper(f.subs(i, i + a), i, 0) | |
if f.subs(i, 0) == 0: | |
from sympy.simplify.simplify import simplify | |
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: | |
return S.Zero, True | |
return _eval_sum_hyper(f.subs(i, i + 1), i, 0) | |
from sympy.simplify.simplify import hypersimp | |
hs = hypersimp(f, i) | |
if hs is None: | |
return None | |
if isinstance(hs, Float): | |
from sympy.simplify.simplify import nsimplify | |
hs = nsimplify(hs) | |
from sympy.simplify.combsimp import combsimp | |
from sympy.simplify.hyperexpand import hyperexpand | |
from sympy.simplify.radsimp import fraction | |
numer, denom = fraction(factor(hs)) | |
top, topl = numer.as_coeff_mul(i) | |
bot, botl = denom.as_coeff_mul(i) | |
ab = [top, bot] | |
factors = [topl, botl] | |
params = [[], []] | |
for k in range(2): | |
for fac in factors[k]: | |
mul = 1 | |
if fac.is_Pow: | |
mul = fac.exp | |
fac = fac.base | |
if not mul.is_Integer: | |
return None | |
p = Poly(fac, i) | |
if p.degree() != 1: | |
return None | |
m, n = p.all_coeffs() | |
ab[k] *= m**mul | |
params[k] += [n/m]*mul | |
# Add "1" to numerator parameters, to account for implicit n! in | |
# hypergeometric series. | |
ap = params[0] + [1] | |
bq = params[1] | |
x = ab[0]/ab[1] | |
h = hyper(ap, bq, x) | |
f = combsimp(f) | |
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement | |
def eval_sum_hyper(f, i_a_b): | |
i, a, b = i_a_b | |
if f.is_hypergeometric(i) is False: | |
return | |
if (b - a).is_Integer: | |
# We are never going to do better than doing the sum in the obvious way | |
return None | |
old_sum = Sum(f, (i, a, b)) | |
if b != S.Infinity: | |
if a is S.NegativeInfinity: | |
res = _eval_sum_hyper(f.subs(i, -i), i, -b) | |
if res is not None: | |
return Piecewise(res, (old_sum, True)) | |
else: | |
n_illegal = lambda x: sum(x.count(_) for _ in _illegal) | |
had = n_illegal(f) | |
# check that no extra illegals are introduced | |
res1 = _eval_sum_hyper(f, i, a) | |
if res1 is None or n_illegal(res1) > had: | |
return | |
res2 = _eval_sum_hyper(f, i, b + 1) | |
if res2 is None or n_illegal(res2) > had: | |
return | |
(res1, cond1), (res2, cond2) = res1, res2 | |
cond = And(cond1, cond2) | |
if cond == False: | |
return None | |
return Piecewise((res1 - res2, cond), (old_sum, True)) | |
if a is S.NegativeInfinity: | |
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1) | |
res2 = _eval_sum_hyper(f, i, 0) | |
if res1 is None or res2 is None: | |
return None | |
res1, cond1 = res1 | |
res2, cond2 = res2 | |
cond = And(cond1, cond2) | |
if cond == False or cond.as_set() == S.EmptySet: | |
return None | |
return Piecewise((res1 + res2, cond), (old_sum, True)) | |
# Now b == oo, a != -oo | |
res = _eval_sum_hyper(f, i, a) | |
if res is not None: | |
r, c = res | |
if c == False: | |
if r.is_number: | |
f = f.subs(i, Dummy('i', integer=True, positive=True) + a) | |
if f.is_positive or f.is_zero: | |
return S.Infinity | |
elif f.is_negative: | |
return S.NegativeInfinity | |
return None | |
return Piecewise(res, (old_sum, True)) | |
def eval_sum_residue(f, i_a_b): | |
r"""Compute the infinite summation with residues | |
Notes | |
===== | |
If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$, | |
some infinite summations can be computed by the following residue | |
evaluations. | |
.. math:: | |
\sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} = | |
-\pi \sum_{\alpha|g(\alpha)=0} | |
\text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha) | |
.. math:: | |
\sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} = | |
-\pi \sum_{\alpha|g(\alpha)=0} | |
\text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha) | |
Examples | |
======== | |
>>> from sympy import Sum, oo, Symbol | |
>>> x = Symbol('x') | |
Doubly infinite series of rational functions. | |
>>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit() | |
pi/tanh(pi) | |
Doubly infinite alternating series of rational functions. | |
>>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit() | |
pi/sinh(pi) | |
Infinite series of even rational functions. | |
>>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit() | |
1/2 + pi/(2*tanh(pi)) | |
Infinite series of alternating even rational functions. | |
>>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit() | |
pi/(2*sinh(pi)) + 1/2 | |
This also have heuristics to transform arbitrarily shifted summand or | |
arbitrarily shifted summation range to the canonical problem the | |
formula can handle. | |
>>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit() | |
1/2 + pi/(2*tanh(pi)) | |
>>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit() | |
1/2 + pi/(2*tanh(pi)) | |
>>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit() | |
-1/2 + pi/(2*tanh(pi)) | |
>>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit() | |
-1 + pi/(2*tanh(pi)) | |
References | |
========== | |
.. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf | |
.. [#] Asmar N.H., Grafakos L. (2018) Residue Theory. | |
In: Complex Analysis with Applications. | |
Undergraduate Texts in Mathematics. Springer, Cham. | |
https://doi.org/10.1007/978-3-319-94063-2_5 | |
""" | |
i, a, b = i_a_b | |
def is_even_function(numer, denom): | |
"""Test if the rational function is an even function""" | |
numer_even = all(i % 2 == 0 for (i,) in numer.monoms()) | |
denom_even = all(i % 2 == 0 for (i,) in denom.monoms()) | |
numer_odd = all(i % 2 == 1 for (i,) in numer.monoms()) | |
denom_odd = all(i % 2 == 1 for (i,) in denom.monoms()) | |
return (numer_even and denom_even) or (numer_odd and denom_odd) | |
def match_rational(f, i): | |
numer, denom = f.as_numer_denom() | |
try: | |
(numer, denom), opt = parallel_poly_from_expr((numer, denom), i) | |
except (PolificationFailed, PolynomialError): | |
return None | |
return numer, denom | |
def get_poles(denom): | |
roots = denom.sqf_part().all_roots() | |
roots = sift(roots, lambda x: x.is_integer) | |
if None in roots: | |
return None | |
int_roots, nonint_roots = roots[True], roots[False] | |
return int_roots, nonint_roots | |
def get_shift(denom): | |
n = denom.degree(i) | |
a = denom.coeff_monomial(i**n) | |
b = denom.coeff_monomial(i**(n-1)) | |
shift = - b / a / n | |
return shift | |
#Need a dummy symbol with no assumptions set for get_residue_factor | |
z = Dummy('z') | |
def get_residue_factor(numer, denom, alternating): | |
residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z) | |
if not alternating: | |
residue_factor *= cot(S.Pi * z) | |
else: | |
residue_factor *= csc(S.Pi * z) | |
return residue_factor | |
# We don't know how to deal with symbolic constants in summand | |
if f.free_symbols - {i}: | |
return None | |
if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)): | |
return None | |
if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)): | |
return None | |
# Quick exit heuristic for the sums which doesn't have infinite range | |
if a != S.NegativeInfinity and b != S.Infinity: | |
return None | |
match = match_rational(f, i) | |
if match: | |
alternating = False | |
numer, denom = match | |
else: | |
match = match_rational(f / S.NegativeOne**i, i) | |
if match: | |
alternating = True | |
numer, denom = match | |
else: | |
return None | |
if denom.degree(i) - numer.degree(i) < 2: | |
return None | |
if (a, b) == (S.NegativeInfinity, S.Infinity): | |
poles = get_poles(denom) | |
if poles is None: | |
return None | |
int_roots, nonint_roots = poles | |
if int_roots: | |
return None | |
residue_factor = get_residue_factor(numer, denom, alternating) | |
residues = [residue(residue_factor, z, root) for root in nonint_roots] | |
return -S.Pi * sum(residues) | |
if not (a.is_finite and b is S.Infinity): | |
return None | |
if not is_even_function(numer, denom): | |
# Try shifting summation and check if the summand can be made | |
# and even function from the origin. | |
# Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s)) | |
shift = get_shift(denom) | |
if not shift.is_Integer: | |
return None | |
if shift == 0: | |
return None | |
numer = numer.shift(shift) | |
denom = denom.shift(shift) | |
if not is_even_function(numer, denom): | |
return None | |
if alternating: | |
f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr()) | |
else: | |
f = numer.as_expr() / denom.as_expr() | |
return eval_sum_residue(f, (i, a-shift, b-shift)) | |
poles = get_poles(denom) | |
if poles is None: | |
return None | |
int_roots, nonint_roots = poles | |
if int_roots: | |
int_roots = [int(root) for root in int_roots] | |
int_roots_max = max(int_roots) | |
int_roots_min = min(int_roots) | |
# Integer valued poles must be next to each other | |
# and also symmetric from origin (Because the function is even) | |
if not len(int_roots) == int_roots_max - int_roots_min + 1: | |
return None | |
# Check whether the summation indices contain poles | |
if a <= max(int_roots): | |
return None | |
residue_factor = get_residue_factor(numer, denom, alternating) | |
residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots] | |
full_sum = -S.Pi * sum(residues) | |
if not int_roots: | |
# Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation | |
# at the origin. | |
half_sum = (full_sum + f.xreplace({i: 0})) / 2 | |
# Add and subtract extraneous evaluations | |
extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)] | |
extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))] | |
result = half_sum + sum(extraneous_neg) - sum(extraneous_pos) | |
return result | |
# Compute Sum(f, (i, min(poles) + 1, oo)) | |
half_sum = full_sum / 2 | |
# Subtract extraneous evaluations | |
extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))] | |
result = half_sum - sum(extraneous) | |
return result | |
def _eval_matrix_sum(expression): | |
f = expression.function | |
for limit in expression.limits: | |
i, a, b = limit | |
dif = b - a | |
if dif.is_Integer: | |
if (dif < 0) == True: | |
a, b = b + 1, a - 1 | |
f = -f | |
newf = eval_sum_direct(f, (i, a, b)) | |
if newf is not None: | |
return newf.doit() | |
def _dummy_with_inherited_properties_concrete(limits): | |
""" | |
Return a Dummy symbol that inherits as many assumptions as possible | |
from the provided symbol and limits. | |
If the symbol already has all True assumption shared by the limits | |
then return None. | |
""" | |
x, a, b = limits | |
l = [a, b] | |
assumptions_to_consider = ['extended_nonnegative', 'nonnegative', | |
'extended_nonpositive', 'nonpositive', | |
'extended_positive', 'positive', | |
'extended_negative', 'negative', | |
'integer', 'rational', 'finite', | |
'zero', 'real', 'extended_real'] | |
assumptions_to_keep = {} | |
assumptions_to_add = {} | |
for assum in assumptions_to_consider: | |
assum_true = x._assumptions.get(assum, None) | |
if assum_true: | |
assumptions_to_keep[assum] = True | |
elif all(getattr(i, 'is_' + assum) for i in l): | |
assumptions_to_add[assum] = True | |
if assumptions_to_add: | |
assumptions_to_keep.update(assumptions_to_add) | |
return Dummy('d', **assumptions_to_keep) | |