File size: 55,357 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
from typing import Tuple as tTuple

from sympy.calculus.singularities import is_decreasing
from sympy.calculus.accumulationbounds import AccumulationBounds
from .expr_with_intlimits import ExprWithIntLimits
from .expr_with_limits import AddWithLimits
from .gosper import gosper_sum
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.function import Derivative, expand
from sympy.core.mul import Mul
from sympy.core.numbers import Float, _illegal
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Wild, Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cot, csc
from sympy.functions.special.hyper import hyper
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import And
from sympy.polys.partfrac import apart
from sympy.polys.polyerrors import PolynomialError, PolificationFailed
from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor
from sympy.polys.rationaltools import together
from sympy.series.limitseq import limit_seq
from sympy.series.order import O
from sympy.series.residues import residue
from sympy.sets.sets import FiniteSet, Interval
from sympy.utilities.iterables import sift
import itertools


class Sum(AddWithLimits, ExprWithIntLimits):
    r"""
    Represents unevaluated summation.

    Explanation
    ===========

    ``Sum`` represents a finite or infinite series, with the first argument
    being the general form of terms in the series, and the second argument
    being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
    all integer values from ``start`` through ``end``. In accordance with
    long-standing mathematical convention, the end term is included in the
    summation.

    Finite sums
    ===========

    For finite sums (and sums with symbolic limits assumed to be finite) we
    follow the summation convention described by Karr [1], especially
    definition 3 of section 1.4. The sum:

    .. math::

        \sum_{m \leq i < n} f(i)

    has *the obvious meaning* for `m < n`, namely:

    .. math::

        \sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)

    with the upper limit value `f(n)` excluded. The sum over an empty set is
    zero if and only if `m = n`:

    .. math::

        \sum_{m \leq i < n} f(i) = 0  \quad \mathrm{for} \quad  m = n

    Finally, for all other sums over empty sets we assume the following
    definition:

    .. math::

        \sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i)  \quad \mathrm{for} \quad  m > n

    It is important to note that Karr defines all sums with the upper
    limit being exclusive. This is in contrast to the usual mathematical notation,
    but does not affect the summation convention. Indeed we have:

    .. math::

        \sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)

    where the difference in notation is intentional to emphasize the meaning,
    with limits typeset on the top being inclusive.

    Examples
    ========

    >>> from sympy.abc import i, k, m, n, x
    >>> from sympy import Sum, factorial, oo, IndexedBase, Function
    >>> Sum(k, (k, 1, m))
    Sum(k, (k, 1, m))
    >>> Sum(k, (k, 1, m)).doit()
    m**2/2 + m/2
    >>> Sum(k**2, (k, 1, m))
    Sum(k**2, (k, 1, m))
    >>> Sum(k**2, (k, 1, m)).doit()
    m**3/3 + m**2/2 + m/6
    >>> Sum(x**k, (k, 0, oo))
    Sum(x**k, (k, 0, oo))
    >>> Sum(x**k, (k, 0, oo)).doit()
    Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
    >>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
    exp(x)

    Here are examples to do summation with symbolic indices.  You
    can use either Function of IndexedBase classes:

    >>> f = Function('f')
    >>> Sum(f(n), (n, 0, 3)).doit()
    f(0) + f(1) + f(2) + f(3)
    >>> Sum(f(n), (n, 0, oo)).doit()
    Sum(f(n), (n, 0, oo))
    >>> f = IndexedBase('f')
    >>> Sum(f[n]**2, (n, 0, 3)).doit()
    f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2

    An example showing that the symbolic result of a summation is still
    valid for seemingly nonsensical values of the limits. Then the Karr
    convention allows us to give a perfectly valid interpretation to
    those sums by interchanging the limits according to the above rules:

    >>> S = Sum(i, (i, 1, n)).doit()
    >>> S
    n**2/2 + n/2
    >>> S.subs(n, -4)
    6
    >>> Sum(i, (i, 1, -4)).doit()
    6
    >>> Sum(-i, (i, -3, 0)).doit()
    6

    An explicit example of the Karr summation convention:

    >>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
    >>> S1
    m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
    >>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
    >>> S2
    -m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
    >>> S1 + S2
    0
    >>> S3 = Sum(i, (i, m, m-1)).doit()
    >>> S3
    0

    See Also
    ========

    summation
    Product, sympy.concrete.products.product

    References
    ==========

    .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
           Volume 28 Issue 2, April 1981, Pages 305-350
           https://dl.acm.org/doi/10.1145/322248.322255
    .. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
    .. [3] https://en.wikipedia.org/wiki/Empty_sum
    """

    __slots__ = ()

    limits: tTuple[tTuple[Symbol, Expr, Expr]]

    def __new__(cls, function, *symbols, **assumptions):
        obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
        if not hasattr(obj, 'limits'):
            return obj
        if any(len(l) != 3 or None in l for l in obj.limits):
            raise ValueError('Sum requires values for lower and upper bounds.')

        return obj

    def _eval_is_zero(self):
        # a Sum is only zero if its function is zero or if all terms
        # cancel out. This only answers whether the summand is zero; if
        # not then None is returned since we don't analyze whether all
        # terms cancel out.
        if self.function.is_zero or self.has_empty_sequence:
            return True

    def _eval_is_extended_real(self):
        if self.has_empty_sequence:
            return True
        return self.function.is_extended_real

    def _eval_is_positive(self):
        if self.has_finite_limits and self.has_reversed_limits is False:
            return self.function.is_positive

    def _eval_is_negative(self):
        if self.has_finite_limits and self.has_reversed_limits is False:
            return self.function.is_negative

    def _eval_is_finite(self):
        if self.has_finite_limits and self.function.is_finite:
            return True

    def doit(self, **hints):
        if hints.get('deep', True):
            f = self.function.doit(**hints)
        else:
            f = self.function

        # first make sure any definite limits have summation
        # variables with matching assumptions
        reps = {}
        for xab in self.limits:
            d = _dummy_with_inherited_properties_concrete(xab)
            if d:
                reps[xab[0]] = d
        if reps:
            undo = {v: k for k, v in reps.items()}
            did = self.xreplace(reps).doit(**hints)
            if isinstance(did, tuple):  # when separate=True
                did = tuple([i.xreplace(undo) for i in did])
            elif did is not None:
                did = did.xreplace(undo)
            else:
                did = self
            return did


        if self.function.is_Matrix:
            expanded = self.expand()
            if self != expanded:
                return expanded.doit()
            return _eval_matrix_sum(self)

        for n, limit in enumerate(self.limits):
            i, a, b = limit
            dif = b - a
            if dif == -1:
                # Any summation over an empty set is zero
                return S.Zero
            if dif.is_integer and dif.is_negative:
                a, b = b + 1, a - 1
                f = -f

            newf = eval_sum(f, (i, a, b))
            if newf is None:
                if f == self.function:
                    zeta_function = self.eval_zeta_function(f, (i, a, b))
                    if zeta_function is not None:
                        return zeta_function
                    return self
                else:
                    return self.func(f, *self.limits[n:])
            f = newf

        if hints.get('deep', True):
            # eval_sum could return partially unevaluated
            # result with Piecewise.  In this case we won't
            # doit() recursively.
            if not isinstance(f, Piecewise):
                return f.doit(**hints)

        return f

    def eval_zeta_function(self, f, limits):
        """
        Check whether the function matches with the zeta function.

        If it matches, then return a `Piecewise` expression because
        zeta function does not converge unless `s > 1` and `q > 0`
        """
        i, a, b = limits
        w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
        result = f.match((w * i + y) ** (-z))
        if result is not None and b is S.Infinity:
            coeff = 1 / result[w] ** result[z]
            s = result[z]
            q = result[y] / result[w] + a
            return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))

    def _eval_derivative(self, x):
        """
        Differentiate wrt x as long as x is not in the free symbols of any of
        the upper or lower limits.

        Explanation
        ===========

        Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
        since the value of the sum is discontinuous in `a`. In a case
        involving a limit variable, the unevaluated derivative is returned.
        """

        # diff already confirmed that x is in the free symbols of self, but we
        # don't want to differentiate wrt any free symbol in the upper or lower
        # limits
        # XXX remove this test for free_symbols when the default _eval_derivative is in
        if isinstance(x, Symbol) and x not in self.free_symbols:
            return S.Zero

        # get limits and the function
        f, limits = self.function, list(self.limits)

        limit = limits.pop(-1)

        if limits:  # f is the argument to a Sum
            f = self.func(f, *limits)

        _, a, b = limit
        if x in a.free_symbols or x in b.free_symbols:
            return None
        df = Derivative(f, x, evaluate=True)
        rv = self.func(df, limit)
        return rv

    def _eval_difference_delta(self, n, step):
        k, _, upper = self.args[-1]
        new_upper = upper.subs(n, n + step)

        if len(self.args) == 2:
            f = self.args[0]
        else:
            f = self.func(*self.args[:-1])

        return Sum(f, (k, upper + 1, new_upper)).doit()

    def _eval_simplify(self, **kwargs):

        function = self.function

        if kwargs.get('deep', True):
            function = function.simplify(**kwargs)

        # split the function into adds
        terms = Add.make_args(expand(function))
        s_t = [] # Sum Terms
        o_t = [] # Other Terms

        for term in terms:
            if term.has(Sum):
                # if there is an embedded sum here
                # it is of the form x * (Sum(whatever))
                # hence we make a Mul out of it, and simplify all interior sum terms
                subterms = Mul.make_args(expand(term))
                out_terms = []
                for subterm in subterms:
                    # go through each term
                    if isinstance(subterm, Sum):
                        # if it's a sum, simplify it
                        out_terms.append(subterm._eval_simplify(**kwargs))
                    else:
                        # otherwise, add it as is
                        out_terms.append(subterm)

                # turn it back into a Mul
                s_t.append(Mul(*out_terms))
            else:
                o_t.append(term)

        # next try to combine any interior sums for further simplification
        from sympy.simplify.simplify import factor_sum, sum_combine
        result = Add(sum_combine(s_t), *o_t)

        return factor_sum(result, limits=self.limits)

    def is_convergent(self):
        r"""
        Checks for the convergence of a Sum.

        Explanation
        ===========

        We divide the study of convergence of infinite sums and products in
        two parts.

        First Part:
        One part is the question whether all the terms are well defined, i.e.,
        they are finite in a sum and also non-zero in a product. Zero
        is the analogy of (minus) infinity in products as
        :math:`e^{-\infty} = 0`.

        Second Part:
        The second part is the question of convergence after infinities,
        and zeros in products, have been omitted assuming that their number
        is finite. This means that we only consider the tail of the sum or
        product, starting from some point after which all terms are well
        defined.

        For example, in a sum of the form:

        .. math::

            \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}

        where a and b are numbers. The routine will return true, even if there
        are infinities in the term sequence (at most two). An analogous
        product would be:

        .. math::

            \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}

        This is how convergence is interpreted. It is concerned with what
        happens at the limit. Finding the bad terms is another independent
        matter.

        Note: It is responsibility of user to see that the sum or product
        is well defined.

        There are various tests employed to check the convergence like
        divergence test, root test, integral test, alternating series test,
        comparison tests, Dirichlet tests. It returns true if Sum is convergent
        and false if divergent and NotImplementedError if it cannot be checked.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolutely_convergent
        sympy.concrete.products.Product.is_convergent
        """
        p, q, r = symbols('p q r', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function.simplify()

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError("convergence checking for more than one symbol "
                                      "containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity
        # and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            from sympy.simplify.simplify import simplify
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        sym_ = Dummy(sym.name, integer=True, positive=True)
        sequence_term = sequence_term.xreplace({sym: sym_})
        sym = sym_

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func, cond in sequence_term.args:
                # see if it represents something going to oo
                if cond == True or cond.as_set().sup is S.Infinity:
                    s = Sum(func, (sym, lower_limit, upper_limit))
                    return s.is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
           lim_val = limit_seq(sequence_term, sym)
           if lim_val is not None and lim_val.is_zero is False:
               return S.false
        except NotImplementedError:
            pass

        try:
            lim_val_abs = limit_seq(abs(sequence_term), sym)
            if lim_val_abs is not None and lim_val_abs.is_zero is False:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### --------- p-series test (1/n**p) ---------- ###
        p_series_test = order.expr.match(sym**p)
        if p_series_test is not None:
            if p_series_test[p] < -1:
                return S.true
            if p_series_test[p] >= -1:
                return S.false

        ### ------------- comparison test ------------- ###
        # 1/(n**p*log(n)**q*log(log(n))**r) comparison
        n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or
                      order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r)))
        if n_log_test is not None:
            if (n_log_test[p] > 1 or
                (n_log_test[p] == 1 and n_log_test[q] > 1) or
                (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
                    return S.true
            return S.false

        ### ------------- Limit comparison test -----------###
        # (1/n) comparison
        try:
            lim_comp = limit_seq(sym*sequence_term, sym)
            if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
                return S.false
        except NotImplementedError:
            pass

        ### ----------- ratio test ---------------- ###
        next_sequence_term = sequence_term.xreplace({sym: sym + 1})
        from sympy.simplify.combsimp import combsimp
        from sympy.simplify.powsimp import powsimp
        ratio = combsimp(powsimp(next_sequence_term/sequence_term))
        try:
            lim_ratio = limit_seq(ratio, sym)
            if lim_ratio is not None and lim_ratio.is_number:
                if abs(lim_ratio) > 1:
                    return S.false
                if abs(lim_ratio) < 1:
                    return S.true
        except NotImplementedError:
            lim_ratio = None

        ### ---------- Raabe's test -------------- ###
        if lim_ratio == 1:  # ratio test inconclusive
            test_val = sym*(sequence_term/
                         sequence_term.subs(sym, sym + 1) - 1)
            test_val = test_val.gammasimp()
            try:
                lim_val = limit_seq(test_val, sym)
                if lim_val is not None and lim_val.is_number:
                    if lim_val > 1:
                        return S.true
                    if lim_val < 1:
                        return S.false
            except NotImplementedError:
                pass

        ### ----------- root test ---------------- ###
        # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        try:
            lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
            if lim_evaluated is not None and lim_evaluated.is_number:
                if lim_evaluated < 1:
                    return S.true
                if lim_evaluated > 1:
                    return S.false
        except NotImplementedError:
            pass

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true

        ### ------------- integral test -------------- ###
        check_interval = None
        from sympy.solvers.solveset import solveset
        maxima = solveset(sequence_term.diff(sym), sym, interval)
        if not maxima:
            check_interval = interval
        elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
            check_interval = Interval(maxima.sup, interval.sup)
        if (check_interval is not None and
            (is_decreasing(sequence_term, check_interval) or
            is_decreasing(-sequence_term, check_interval))):
                integral_val = Integral(
                    sequence_term, (sym, lower_limit, upper_limit))
                try:
                    integral_val_evaluated = integral_val.doit()
                    if integral_val_evaluated.is_number:
                        return S(integral_val_evaluated.is_finite)
                except NotImplementedError:
                    pass

        ### ----- Dirichlet and bounded times convergent tests ----- ###
        # TODO
        #
        # Dirichlet_test
        # https://en.wikipedia.org/wiki/Dirichlet%27s_test
        #
        # Bounded times convergent test
        # It is based on comparison theorems for series.
        # In particular, if the general term of a series can
        # be written as a product of two terms a_n and b_n
        # and if a_n is bounded and if Sum(b_n) is absolutely
        # convergent, then the original series Sum(a_n * b_n)
        # is absolutely convergent and so convergent.
        #
        # The following code can grows like 2**n where n is the
        # number of args in order.expr
        # Possibly combined with the potentially slow checks
        # inside the loop, could make this test extremely slow
        # for larger summation expressions.

        if order.expr.is_Mul:
            args = order.expr.args
            argset = set(args)

            ### -------------- Dirichlet tests -------------- ###
            m = Dummy('m', integer=True)
            def _dirichlet_test(g_n):
                try:
                    ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
                    if ing_val is not None and ing_val.is_finite:
                        return S.true
                except NotImplementedError:
                    pass

            ### -------- bounded times convergent test ---------###
            def _bounded_convergent_test(g1_n, g2_n):
                try:
                    lim_val = limit_seq(g1_n, sym)
                    if lim_val is not None and (lim_val.is_finite or (
                        isinstance(lim_val, AccumulationBounds)
                        and (lim_val.max - lim_val.min).is_finite)):
                            if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
                                return S.true
                except NotImplementedError:
                    pass

            for n in range(1, len(argset)):
                for a_tuple in itertools.combinations(args, n):
                    b_set = argset - set(a_tuple)
                    a_n = Mul(*a_tuple)
                    b_n = Mul(*b_set)

                    if is_decreasing(a_n, interval):
                        dirich = _dirichlet_test(b_n)
                        if dirich is not None:
                            return dirich

                    bc_test = _bounded_convergent_test(a_n, b_n)
                    if bc_test is not None:
                        return bc_test

        _sym = self.limits[0][0]
        sequence_term = sequence_term.xreplace({sym: _sym})
        raise NotImplementedError("The algorithm to find the Sum convergence of %s "
                                  "is not yet implemented" % (sequence_term))

    def is_absolutely_convergent(self):
        """
        Checks for the absolute convergence of an infinite series.

        Same as checking convergence of absolute value of sequence_term of
        an infinite series.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Absolute_convergence

        Examples
        ========

        >>> from sympy import Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
        False
        >>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
        True

        See Also
        ========

        Sum.is_convergent
        """
        return Sum(abs(self.function), self.limits).is_convergent()

    def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
        """
        Return an Euler-Maclaurin approximation of self, where m is the
        number of leading terms to sum directly and n is the number of
        terms in the tail.

        With m = n = 0, this is simply the corresponding integral
        plus a first-order endpoint correction.

        Returns (s, e) where s is the Euler-Maclaurin approximation
        and e is the estimated error (taken to be the magnitude of
        the first omitted term in the tail):

            >>> from sympy.abc import k, a, b
            >>> from sympy import Sum
            >>> Sum(1/k, (k, 2, 5)).doit().evalf()
            1.28333333333333
            >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
            >>> s
            -log(2) + 7/20 + log(5)
            >>> from sympy import sstr
            >>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
            (1.26629073187415, 0.0175000000000000)

        The endpoints may be symbolic:

            >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
            >>> s
            -log(a) + log(b) + 1/(2*b) + 1/(2*a)
            >>> e
            Abs(1/(12*b**2) - 1/(12*a**2))

        If the function is a polynomial of degree at most 2n+1, the
        Euler-Maclaurin formula becomes exact (and e = 0 is returned):

            >>> Sum(k, (k, 2, b)).euler_maclaurin()
            (b**2/2 + b/2 - 1, 0)
            >>> Sum(k, (k, 2, b)).doit()
            b**2/2 + b/2 - 1

        With a nonzero eps specified, the summation is ended
        as soon as the remainder term is less than the epsilon.
        """
        m = int(m)
        n = int(n)
        f = self.function
        if len(self.limits) != 1:
            raise ValueError("More than 1 limit")
        i, a, b = self.limits[0]
        if (a > b) == True:
            if a - b == 1:
                return S.Zero, S.Zero
            a, b = b + 1, a - 1
            f = -f
        s = S.Zero
        if m:
            if b.is_Integer and a.is_Integer:
                m = min(m, b - a + 1)
            if not eps or f.is_polynomial(i):
                s = Add(*[f.subs(i, a + k) for k in range(m)])
            else:
                term = f.subs(i, a)
                if term:
                    test = abs(term.evalf(3)) < eps
                    if test == True:
                        return s, abs(term)
                    elif not (test == False):
                        # a symbolic Relational class, can't go further
                        return term, S.Zero
                s = term
                for k in range(1, m):
                    term = f.subs(i, a + k)
                    if abs(term.evalf(3)) < eps and term != 0:
                        return s, abs(term)
                    s += term
            if b - a + 1 == m:
                return s, S.Zero
            a += m
        x = Dummy('x')
        I = Integral(f.subs(i, x), (x, a, b))
        if eval_integral:
            I = I.doit()
        s += I

        def fpoint(expr):
            if b is S.Infinity:
                return expr.subs(i, a), 0
            return expr.subs(i, a), expr.subs(i, b)
        fa, fb = fpoint(f)
        iterm = (fa + fb)/2
        g = f.diff(i)
        for k in range(1, n + 2):
            ga, gb = fpoint(g)
            term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
            if k > n:
                break
            if eps and term:
                term_evalf = term.evalf(3)
                if term_evalf is S.NaN:
                    return S.NaN, S.NaN
                if abs(term_evalf) < eps:
                    break
            s += term
            g = g.diff(i, 2, simplify=False)
        return s + iterm, abs(term)


    def reverse_order(self, *indices):
        """
        Reverse the order of a limit in a Sum.

        Explanation
        ===========

        ``reverse_order(self, *indices)`` reverses some limits in the expression
        ``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
        the argument ``indices`` specify some indices whose limits get reversed.
        These selectors are either variable names or numerical indices counted
        starting from the inner-most limit tuple.

        Examples
        ========

        >>> from sympy import Sum
        >>> from sympy.abc import x, y, a, b, c, d

        >>> Sum(x, (x, 0, 3)).reverse_order(x)
        Sum(-x, (x, 4, -1))
        >>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
        Sum(x*y, (x, 6, 0), (y, 7, -1))
        >>> Sum(x, (x, a, b)).reverse_order(x)
        Sum(-x, (x, b + 1, a - 1))
        >>> Sum(x, (x, a, b)).reverse_order(0)
        Sum(-x, (x, b + 1, a - 1))

        While one should prefer variable names when specifying which limits
        to reverse, the index counting notation comes in handy in case there
        are several symbols with the same name.

        >>> S = Sum(x**2, (x, a, b), (x, c, d))
        >>> S
        Sum(x**2, (x, a, b), (x, c, d))
        >>> S0 = S.reverse_order(0)
        >>> S0
        Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
        >>> S1 = S0.reverse_order(1)
        >>> S1
        Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))

        Of course we can mix both notations:

        >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
        Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
        >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
        Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))

        See Also
        ========

        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
        sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder

        References
        ==========

        .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
               Volume 28 Issue 2, April 1981, Pages 305-350
               https://dl.acm.org/doi/10.1145/322248.322255
        """
        l_indices = list(indices)

        for i, indx in enumerate(l_indices):
            if not isinstance(indx, int):
                l_indices[i] = self.index(indx)

        e = 1
        limits = []
        for i, limit in enumerate(self.limits):
            l = limit
            if i in l_indices:
                e = -e
                l = (limit[0], limit[2] + 1, limit[1] - 1)
            limits.append(l)

        return Sum(e * self.function, *limits)

    def _eval_rewrite_as_Product(self, *args, **kwargs):
        from sympy.concrete.products import Product
        if self.function.is_extended_real:
            return log(Product(exp(self.function), *self.limits))


def summation(f, *symbols, **kwargs):
    r"""
    Compute the summation of f with respect to symbols.

    Explanation
    ===========

    The notation for symbols is similar to the notation used in Integral.
    summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
    i.e.,

    ::

                                    b
                                  ____
                                  \   `
        summation(f, (i, a, b)) =  )    f
                                  /___,
                                  i = a

    If it cannot compute the sum, it returns an unevaluated Sum object.
    Repeated sums can be computed by introducing additional symbols tuples::

    Examples
    ========

    >>> from sympy import summation, oo, symbols, log
    >>> i, n, m = symbols('i n m', integer=True)

    >>> summation(2*i - 1, (i, 1, n))
    n**2
    >>> summation(1/2**i, (i, 0, oo))
    2
    >>> summation(1/log(n)**n, (n, 2, oo))
    Sum(log(n)**(-n), (n, 2, oo))
    >>> summation(i, (i, 0, n), (n, 0, m))
    m**3/6 + m**2/2 + m/3

    >>> from sympy.abc import x
    >>> from sympy import factorial
    >>> summation(x**n/factorial(n), (n, 0, oo))
    exp(x)

    See Also
    ========

    Sum
    Product, sympy.concrete.products.product

    """
    return Sum(f, *symbols, **kwargs).doit(deep=False)


def telescopic_direct(L, R, n, limits):
    """
    Returns the direct summation of the terms of a telescopic sum

    Explanation
    ===========

    L is the term with lower index
    R is the term with higher index
    n difference between the indexes of L and R

    Examples
    ========

    >>> from sympy.concrete.summations import telescopic_direct
    >>> from sympy.abc import k, a, b
    >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
    -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a

    """
    (i, a, b) = limits
    return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)])


def telescopic(L, R, limits):
    '''
    Tries to perform the summation using the telescopic property.

    Return None if not possible.
    '''
    (i, a, b) = limits
    if L.is_Add or R.is_Add:
        return None

    # We want to solve(L.subs(i, i + m) + R, m)
    # First we try a simple match since this does things that
    # solve doesn't do, e.g. solve(cos(k+m)-cos(k), m) gives
    # a more complicated solution than m == 0.

    k = Wild("k")
    sol = (-R).match(L.subs(i, i + k))
    s = None
    if sol and k in sol:
        s = sol[k]
        if not (s.is_Integer and L.subs(i, i + s) + R == 0):
            # invalid match or match didn't work
            s = None

    # But there are things that match doesn't do that solve
    # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1

    if s is None:
        m = Dummy('m')
        try:
            from sympy.solvers.solvers import solve
            sol = solve(L.subs(i, i + m) + R, m) or []
        except NotImplementedError:
            return None
        sol = [si for si in sol if si.is_Integer and
               (L.subs(i, i + si) + R).expand().is_zero]
        if len(sol) != 1:
            return None
        s = sol[0]

    if s < 0:
        return telescopic_direct(R, L, abs(s), (i, a, b))
    elif s > 0:
        return telescopic_direct(L, R, s, (i, a, b))


def eval_sum(f, limits):
    (i, a, b) = limits
    if f.is_zero:
        return S.Zero
    if i not in f.free_symbols:
        return f*(b - a + 1)
    if a == b:
        return f.subs(i, a)
    if isinstance(f, Piecewise):
        if not any(i in arg.args[1].free_symbols for arg in f.args):
            # Piecewise conditions do not depend on the dummy summation variable,
            # therefore we can fold:     Sum(Piecewise((e, c), ...), limits)
            #                        --> Piecewise((Sum(e, limits), c), ...)
            newargs = []
            for arg in f.args:
                newexpr = eval_sum(arg.expr, limits)
                if newexpr is None:
                    return None
                newargs.append((newexpr, arg.cond))
            return f.func(*newargs)

    if f.has(KroneckerDelta):
        from .delta import deltasummation, _has_simple_delta
        f = f.replace(
            lambda x: isinstance(x, Sum),
            lambda x: x.factor()
        )
        if _has_simple_delta(f, limits[0]):
            return deltasummation(f, limits)

    dif = b - a
    definite = dif.is_Integer
    # Doing it directly may be faster if there are very few terms.
    if definite and (dif < 100):
        return eval_sum_direct(f, (i, a, b))
    if isinstance(f, Piecewise):
        return None
    # Try to do it symbolically. Even when the number of terms is
    # known, this can save time when b-a is big.
    value = eval_sum_symbolic(f.expand(), (i, a, b))
    if value is not None:
        return value
    # Do it directly
    if definite:
        return eval_sum_direct(f, (i, a, b))


def eval_sum_direct(expr, limits):
    """
    Evaluate expression directly, but perform some simple checks first
    to possibly result in a smaller expression and faster execution.
    """
    (i, a, b) = limits

    dif = b - a
    # Linearity
    if expr.is_Mul:
        # Try factor out everything not including i
        without_i, with_i = expr.as_independent(i)
        if without_i != 1:
            s = eval_sum_direct(with_i, (i, a, b))
            if s:
                r = without_i*s
                if r is not S.NaN:
                    return r
        else:
            # Try term by term
            L, R = expr.as_two_terms()

            if not L.has(i):
                sR = eval_sum_direct(R, (i, a, b))
                if sR:
                    return L*sR

            if not R.has(i):
                sL = eval_sum_direct(L, (i, a, b))
                if sL:
                    return sL*R

    # do this whether its an Add or Mul
    # e.g. apart(1/(25*i**2 + 45*i + 14)) and
    # apart(1/((5*i + 2)*(5*i + 7))) ->
    # -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
    try:
        expr = apart(expr, i)  # see if it becomes an Add
    except PolynomialError:
        pass

    if expr.is_Add:
        # Try factor out everything not including i
        without_i, with_i = expr.as_independent(i)
        if without_i != 0:
            s = eval_sum_direct(with_i, (i, a, b))
            if s:
                r = without_i*(dif + 1) + s
                if r is not S.NaN:
                    return r
        else:
            # Try term by term
            L, R = expr.as_two_terms()
            lsum = eval_sum_direct(L, (i, a, b))
            rsum = eval_sum_direct(R, (i, a, b))

            if None not in (lsum, rsum):
                r = lsum + rsum
                if r is not S.NaN:
                    return r

    return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])


def eval_sum_symbolic(f, limits):
    f_orig = f
    (i, a, b) = limits
    if not f.has(i):
        return f*(b - a + 1)

    # Linearity
    if f.is_Mul:
        # Try factor out everything not including i
        without_i, with_i = f.as_independent(i)
        if without_i != 1:
            s = eval_sum_symbolic(with_i, (i, a, b))
            if s:
                r = without_i*s
                if r is not S.NaN:
                    return r
        else:
            # Try term by term
            L, R = f.as_two_terms()

            if not L.has(i):
                sR = eval_sum_symbolic(R, (i, a, b))
                if sR:
                    return L*sR

            if not R.has(i):
                sL = eval_sum_symbolic(L, (i, a, b))
                if sL:
                    return sL*R

    # do this whether its an Add or Mul
    # e.g. apart(1/(25*i**2 + 45*i + 14)) and
    # apart(1/((5*i + 2)*(5*i + 7))) ->
    # -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
    try:
        f = apart(f, i)
    except PolynomialError:
        pass

    if f.is_Add:
        L, R = f.as_two_terms()
        lrsum = telescopic(L, R, (i, a, b))

        if lrsum:
            return lrsum

        # Try factor out everything not including i
        without_i, with_i = f.as_independent(i)
        if without_i != 0:
            s = eval_sum_symbolic(with_i, (i, a, b))
            if s:
                r = without_i*(b - a + 1) + s
                if r is not S.NaN:
                    return r
        else:
            # Try term by term
            lsum = eval_sum_symbolic(L, (i, a, b))
            rsum = eval_sum_symbolic(R, (i, a, b))

            if None not in (lsum, rsum):
                r = lsum + rsum
                if r is not S.NaN:
                    return r


    # Polynomial terms with Faulhaber's formula
    n = Wild('n')
    result = f.match(i**n)

    if result is not None:
        n = result[n]

        if n.is_Integer:
            if n >= 0:
                if (b is S.Infinity and a is not S.NegativeInfinity) or \
                   (a is S.NegativeInfinity and b is not S.Infinity):
                    return S.Infinity
                return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
            elif a.is_Integer and a >= 1:
                if n == -1:
                    return harmonic(b) - harmonic(a - 1)
                else:
                    return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))

    if not (a.has(S.Infinity, S.NegativeInfinity) or
            b.has(S.Infinity, S.NegativeInfinity)):
        # Geometric terms
        c1 = Wild('c1', exclude=[i])
        c2 = Wild('c2', exclude=[i])
        c3 = Wild('c3', exclude=[i])
        wexp = Wild('wexp')

        # Here we first attempt powsimp on f for easier matching with the
        # exponential pattern, and attempt expansion on the exponent for easier
        # matching with the linear pattern.
        e = f.powsimp().match(c1 ** wexp)
        if e is not None:
            e_exp = e.pop(wexp).expand().match(c2*i + c3)
            if e_exp is not None:
                e.update(e_exp)

                p = (c1**c3).subs(e)
                q = (c1**c2).subs(e)
                r = p*(q**a - q**(b + 1))/(1 - q)
                l = p*(b - a + 1)
                return Piecewise((l, Eq(q, S.One)), (r, True))

        r = gosper_sum(f, (i, a, b))

        if isinstance(r, (Mul,Add)):
            from sympy.simplify.radsimp import denom
            from sympy.solvers.solvers import solve
            non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
            den = denom(together(r))
            den_sym = non_limit & den.free_symbols
            args = []
            for v in ordered(den_sym):
                try:
                    s = solve(den, v)
                    m = Eq(v, s[0]) if s else S.false
                    if m != False:
                        args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
                    break
                except NotImplementedError:
                    continue

            args.append((r, True))
            return Piecewise(*args)

        if r not in (None, S.NaN):
            return r

    h = eval_sum_hyper(f_orig, (i, a, b))
    if h is not None:
        return h

    r = eval_sum_residue(f_orig, (i, a, b))
    if r is not None:
        return r

    factored = f_orig.factor()
    if factored != f_orig:
        return eval_sum_symbolic(factored, (i, a, b))


def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        from sympy.simplify.simplify import simplify
        if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
            return S.Zero, True
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    from sympy.simplify.simplify import hypersimp
    hs = hypersimp(f, i)
    if hs is None:
        return None

    if isinstance(hs, Float):
        from sympy.simplify.simplify import nsimplify
        hs = nsimplify(hs)

    from sympy.simplify.combsimp import combsimp
    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.simplify.radsimp import fraction
    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return None
            p = Poly(fac, i)
            if p.degree() != 1:
                return None
            m, n = p.all_coeffs()
            ab[k] *= m**mul
            params[k] += [n/m]*mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x = ab[0]/ab[1]
    h = hyper(ap, bq, x)
    f = combsimp(f)
    return f.subs(i, 0)*hyperexpand(h), h.convergence_statement


def eval_sum_hyper(f, i_a_b):
    i, a, b = i_a_b

    if f.is_hypergeometric(i) is False:
        return

    if (b - a).is_Integer:
        # We are never going to do better than doing the sum in the obvious way
        return None

    old_sum = Sum(f, (i, a, b))

    if b != S.Infinity:
        if a is S.NegativeInfinity:
            res = _eval_sum_hyper(f.subs(i, -i), i, -b)
            if res is not None:
                return Piecewise(res, (old_sum, True))
        else:
            n_illegal = lambda x: sum(x.count(_) for _ in _illegal)
            had = n_illegal(f)
            # check that no extra illegals are introduced
            res1 = _eval_sum_hyper(f, i, a)
            if res1 is None or n_illegal(res1) > had:
                return
            res2 = _eval_sum_hyper(f, i, b + 1)
            if res2 is None or n_illegal(res2) > had:
                return
            (res1, cond1), (res2, cond2) = res1, res2
            cond = And(cond1, cond2)
            if cond == False:
                return None
            return Piecewise((res1 - res2, cond), (old_sum, True))

    if a is S.NegativeInfinity:
        res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
        res2 = _eval_sum_hyper(f, i, 0)
        if res1 is None or res2 is None:
            return None
        res1, cond1 = res1
        res2, cond2 = res2
        cond = And(cond1, cond2)
        if cond == False or cond.as_set() == S.EmptySet:
            return None
        return Piecewise((res1 + res2, cond), (old_sum, True))

    # Now b == oo, a != -oo
    res = _eval_sum_hyper(f, i, a)
    if res is not None:
        r, c = res
        if c == False:
            if r.is_number:
                f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
                if f.is_positive or f.is_zero:
                    return S.Infinity
                elif f.is_negative:
                    return S.NegativeInfinity
            return None
        return Piecewise(res, (old_sum, True))


def eval_sum_residue(f, i_a_b):
    r"""Compute the infinite summation with residues

    Notes
    =====

    If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$,
    some infinite summations can be computed by the following residue
    evaluations.

    .. math::
        \sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
        -\pi \sum_{\alpha|g(\alpha)=0}
        \text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)

    .. math::
        \sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
        -\pi \sum_{\alpha|g(\alpha)=0}
        \text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)

    Examples
    ========

    >>> from sympy import Sum, oo, Symbol
    >>> x = Symbol('x')

    Doubly infinite series of rational functions.

    >>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
    pi/tanh(pi)

    Doubly infinite alternating series of rational functions.

    >>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
    pi/sinh(pi)

    Infinite series of even rational functions.

    >>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
    1/2 + pi/(2*tanh(pi))

    Infinite series of alternating even rational functions.

    >>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
    pi/(2*sinh(pi)) + 1/2

    This also have heuristics to transform arbitrarily shifted summand or
    arbitrarily shifted summation range to the canonical problem the
    formula can handle.

    >>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
    1/2 + pi/(2*tanh(pi))
    >>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
    1/2 + pi/(2*tanh(pi))
    >>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
    -1/2 + pi/(2*tanh(pi))
    >>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
    -1 + pi/(2*tanh(pi))

    References
    ==========

    .. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf

    .. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
           In: Complex Analysis with Applications.
           Undergraduate Texts in Mathematics. Springer, Cham.
           https://doi.org/10.1007/978-3-319-94063-2_5
    """
    i, a, b = i_a_b

    def is_even_function(numer, denom):
        """Test if the rational function is an even function"""
        numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
        denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
        numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
        denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
        return (numer_even and denom_even) or (numer_odd and denom_odd)

    def match_rational(f, i):
        numer, denom = f.as_numer_denom()
        try:
            (numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
        except (PolificationFailed, PolynomialError):
            return None
        return numer, denom

    def get_poles(denom):
        roots = denom.sqf_part().all_roots()
        roots = sift(roots, lambda x: x.is_integer)
        if None in roots:
            return None
        int_roots, nonint_roots = roots[True], roots[False]
        return int_roots, nonint_roots

    def get_shift(denom):
        n = denom.degree(i)
        a = denom.coeff_monomial(i**n)
        b = denom.coeff_monomial(i**(n-1))
        shift = - b / a / n
        return shift

    #Need a dummy symbol with no assumptions set for get_residue_factor
    z = Dummy('z')

    def get_residue_factor(numer, denom, alternating):
        residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z)
        if not alternating:
            residue_factor *= cot(S.Pi * z)
        else:
            residue_factor *= csc(S.Pi * z)
        return residue_factor

    # We don't know how to deal with symbolic constants in summand
    if f.free_symbols - {i}:
        return None

    if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
        return None
    if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
        return None

    # Quick exit heuristic for the sums which doesn't have infinite range
    if a != S.NegativeInfinity and b != S.Infinity:
        return None

    match = match_rational(f, i)
    if match:
        alternating = False
        numer, denom = match
    else:
        match = match_rational(f / S.NegativeOne**i, i)
        if match:
            alternating = True
            numer, denom = match
        else:
            return None

    if denom.degree(i) - numer.degree(i) < 2:
        return None

    if (a, b) == (S.NegativeInfinity, S.Infinity):
        poles = get_poles(denom)
        if poles is None:
            return None
        int_roots, nonint_roots = poles

        if int_roots:
            return None

        residue_factor = get_residue_factor(numer, denom, alternating)
        residues = [residue(residue_factor, z, root) for root in nonint_roots]
        return -S.Pi * sum(residues)

    if not (a.is_finite and b is S.Infinity):
        return None

    if not is_even_function(numer, denom):
        # Try shifting summation and check if the summand can be made
        # and even function from the origin.
        # Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
        shift = get_shift(denom)

        if not shift.is_Integer:
            return None
        if shift == 0:
            return None

        numer = numer.shift(shift)
        denom = denom.shift(shift)

        if not is_even_function(numer, denom):
            return None

        if alternating:
            f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr())
        else:
            f = numer.as_expr() / denom.as_expr()
        return eval_sum_residue(f, (i, a-shift, b-shift))

    poles = get_poles(denom)
    if poles is None:
        return None
    int_roots, nonint_roots = poles

    if int_roots:
        int_roots = [int(root) for root in int_roots]
        int_roots_max = max(int_roots)
        int_roots_min = min(int_roots)
        # Integer valued poles must be next to each other
        # and also symmetric from origin (Because the function is even)
        if not len(int_roots) == int_roots_max - int_roots_min + 1:
            return None

        # Check whether the summation indices contain poles
        if a <= max(int_roots):
            return None

    residue_factor = get_residue_factor(numer, denom, alternating)
    residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots]
    full_sum = -S.Pi * sum(residues)

    if not int_roots:
        # Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
        # at the origin.
        half_sum = (full_sum + f.xreplace({i: 0})) / 2

        # Add and subtract extraneous evaluations
        extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
        extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
        result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)

        return result

    # Compute Sum(f, (i, min(poles) + 1, oo))
    half_sum = full_sum / 2

    # Subtract extraneous evaluations
    extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
    result = half_sum - sum(extraneous)

    return result


def _eval_matrix_sum(expression):
    f = expression.function
    for limit in expression.limits:
        i, a, b = limit
        dif = b - a
        if dif.is_Integer:
            if (dif < 0) == True:
                a, b = b + 1, a - 1
                f = -f

            newf = eval_sum_direct(f, (i, a, b))
            if newf is not None:
                return newf.doit()


def _dummy_with_inherited_properties_concrete(limits):
    """
    Return a Dummy symbol that inherits as many assumptions as possible
    from the provided symbol and limits.

    If the symbol already has all True assumption shared by the limits
    then return None.
    """
    x, a, b = limits
    l = [a, b]

    assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
                               'extended_nonpositive', 'nonpositive',
                               'extended_positive', 'positive',
                               'extended_negative', 'negative',
                               'integer', 'rational', 'finite',
                               'zero', 'real', 'extended_real']

    assumptions_to_keep = {}
    assumptions_to_add = {}
    for assum in assumptions_to_consider:
        assum_true = x._assumptions.get(assum, None)
        if assum_true:
            assumptions_to_keep[assum] = True
        elif all(getattr(i, 'is_' + assum) for i in l):
            assumptions_to_add[assum] = True
    if assumptions_to_add:
        assumptions_to_keep.update(assumptions_to_add)
        return Dummy('d', **assumptions_to_keep)