Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
9.2 kB
from itertools import chain, combinations
from sympy.external.gmpy import gcd
from sympy.ntheory.factor_ import factorint
from sympy.utilities.misc import as_int
def _is_nilpotent_number(factors: dict) -> bool:
""" Check whether `n` is a nilpotent number.
Note that ``factors`` is a prime factorization of `n`.
This is a low-level helper for ``is_nilpotent_number``, for internal use.
"""
for p in factors.keys():
for q, e in factors.items():
# We want to calculate
# any(pow(q, k, p) == 1 for k in range(1, e + 1))
m = 1
for _ in range(e):
m = m*q % p
if m == 1:
return False
return True
def is_nilpotent_number(n) -> bool:
"""
Check whether `n` is a nilpotent number. A number `n` is said to be
nilpotent if and only if every finite group of order `n` is nilpotent.
For more information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number
>>> from sympy import randprime
>>> is_nilpotent_number(21)
False
>>> is_nilpotent_number(randprime(1, 30)**12)
True
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A056867
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
return _is_nilpotent_number(factorint(n))
def is_abelian_number(n) -> bool:
"""
Check whether `n` is an abelian number. A number `n` is said to be abelian
if and only if every finite group of order `n` is abelian. For more
information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_abelian_number
>>> from sympy import randprime
>>> is_abelian_number(4)
True
>>> is_abelian_number(randprime(1, 2000)**2)
True
>>> is_abelian_number(60)
False
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A051532
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
return all(e < 3 for e in factors.values()) and _is_nilpotent_number(factors)
def is_cyclic_number(n) -> bool:
"""
Check whether `n` is a cyclic number. A number `n` is said to be cyclic
if and only if every finite group of order `n` is cyclic. For more
information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_cyclic_number
>>> from sympy import randprime
>>> is_cyclic_number(15)
True
>>> is_cyclic_number(randprime(1, 2000)**2)
False
>>> is_cyclic_number(4)
False
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A003277
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
return all(e == 1 for e in factors.values()) and _is_nilpotent_number(factors)
def _holder_formula(prime_factors):
r""" Number of groups of order `n`.
where `n` is squarefree and its prime factors are ``prime_factors``.
i.e., ``n == math.prod(prime_factors)``
Explanation
===========
When `n` is squarefree, the number of groups of order `n` is expressed by
.. math ::
\sum_{d \mid n} \prod_p \frac{p^{c(p, d)} - 1}{p - 1}
where `n=de`, `p` is the prime factor of `e`,
and `c(p, d)` is the number of prime factors `q` of `d` such that `q \equiv 1 \pmod{p}` [2]_.
The formula is elegant, but can be improved when implemented as an algorithm.
Since `n` is assumed to be squarefree, the divisor `d` of `n` can be identified with the power set of prime factors.
We let `N` be the set of prime factors of `n`.
`F = \{p \in N : \forall q \in N, q \not\equiv 1 \pmod{p} \}, M = N \setminus F`, we have the following.
.. math ::
\sum_{d \in 2^{M}} \prod_{p \in M \setminus d} \frac{p^{c(p, F \cup d)} - 1}{p - 1}
Practically, many prime factors are expected to be members of `F`, thus reducing computation time.
Parameters
==========
prime_factors : set
The set of prime factors of ``n``. where `n` is squarefree.
Returns
=======
int : Number of groups of order ``n``
Examples
========
>>> from sympy.combinatorics.group_numbers import _holder_formula
>>> _holder_formula({2}) # n = 2
1
>>> _holder_formula({2, 3}) # n = 2*3 = 6
2
See Also
========
groups_count
References
==========
.. [1] Otto Holder, Die Gruppen der Ordnungen p^3, pq^2, pqr, p^4,
Math. Ann. 43 pp. 301-412 (1893).
http://dx.doi.org/10.1007/BF01443651
.. [2] John H. Conway, Heiko Dietrich and E.A. O'Brien,
Counting groups: gnus, moas and other exotica
The Mathematical Intelligencer 30, 6-15 (2008)
https://doi.org/10.1007/BF02985731
"""
F = {p for p in prime_factors if all(q % p != 1 for q in prime_factors)}
M = prime_factors - F
s = 0
powerset = chain.from_iterable(combinations(M, r) for r in range(len(M)+1))
for ps in powerset:
ps = set(ps)
prod = 1
for p in M - ps:
c = len([q for q in F | ps if q % p == 1])
prod *= (p**c - 1) // (p - 1)
if not prod:
break
s += prod
return s
def groups_count(n):
r""" Number of groups of order `n`.
In [1]_, ``gnu(n)`` is given, so we follow this notation here as well.
Parameters
==========
n : Integer
``n`` is a positive integer
Returns
=======
int : ``gnu(n)``
Raises
======
ValueError
Number of groups of order ``n`` is unknown or not implemented.
For example, gnu(`2^{11}`) is not yet known.
On the other hand, gnu(12) is known to be 5,
but this has not yet been implemented in this function.
Examples
========
>>> from sympy.combinatorics.group_numbers import groups_count
>>> groups_count(3) # There is only one cyclic group of order 3
1
>>> # There are two groups of order 10: the cyclic group and the dihedral group
>>> groups_count(10)
2
See Also
========
is_cyclic_number
`n` is cyclic iff gnu(n) = 1
References
==========
.. [1] John H. Conway, Heiko Dietrich and E.A. O'Brien,
Counting groups: gnus, moas and other exotica
The Mathematical Intelligencer 30, 6-15 (2008)
https://doi.org/10.1007/BF02985731
.. [2] https://oeis.org/A000001
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
if len(factors) == 1:
(p, e) = list(factors.items())[0]
if p == 2:
A000679 = [1, 1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487367289]
if e < len(A000679):
return A000679[e]
if p == 3:
A090091 = [1, 1, 2, 5, 15, 67, 504, 9310, 1396077, 5937876645]
if e < len(A090091):
return A090091[e]
if e <= 2: # gnu(p) = 1, gnu(p**2) = 2
return e
if e == 3: # gnu(p**3) = 5
return 5
if e == 4: # if p is an odd prime, gnu(p**4) = 15
return 15
if e == 5: # if p >= 5, gnu(p**5) is expressed by the following equation
return 61 + 2*p + 2*gcd(p-1, 3) + gcd(p-1, 4)
if e == 6: # if p >= 6, gnu(p**6) is expressed by the following equation
return 3*p**2 + 39*p + 344 +\
24*gcd(p-1, 3) + 11*gcd(p-1, 4) + 2*gcd(p-1, 5)
if e == 7: # if p >= 7, gnu(p**7) is expressed by the following equation
if p == 5:
return 34297
return 3*p**5 + 12*p**4 + 44*p**3 + 170*p**2 + 707*p + 2455 +\
(4*p**2 + 44*p + 291)*gcd(p-1, 3) + (p**2 + 19*p + 135)*gcd(p-1, 4) + \
(3*p + 31)*gcd(p-1, 5) + 4*gcd(p-1, 7) + 5*gcd(p-1, 8) + gcd(p-1, 9)
if any(e > 1 for e in factors.values()): # n is not squarefree
# some known values for small n that have more than 1 factor and are not square free (https://oeis.org/A000001)
small = {12: 5, 18: 5, 20: 5, 24: 15, 28: 4, 36: 14, 40: 14, 44: 4, 45: 2, 48: 52,
50: 5, 52: 5, 54: 15, 56: 13, 60: 13, 63: 4, 68: 5, 72: 50, 75: 3, 76: 4,
80: 52, 84: 15, 88: 12, 90: 10, 92: 4}
if n in small:
return small[n]
raise ValueError("Number of groups of order n is unknown or not implemented")
if len(factors) == 2: # n is squarefree semiprime
p, q = list(factors.keys())
if p > q:
p, q = q, p
return 2 if q % p == 1 else 1
return _holder_formula(set(factors.keys()))