Spaces:
Sleeping
Sleeping
File size: 9,203 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
from itertools import chain, combinations
from sympy.external.gmpy import gcd
from sympy.ntheory.factor_ import factorint
from sympy.utilities.misc import as_int
def _is_nilpotent_number(factors: dict) -> bool:
""" Check whether `n` is a nilpotent number.
Note that ``factors`` is a prime factorization of `n`.
This is a low-level helper for ``is_nilpotent_number``, for internal use.
"""
for p in factors.keys():
for q, e in factors.items():
# We want to calculate
# any(pow(q, k, p) == 1 for k in range(1, e + 1))
m = 1
for _ in range(e):
m = m*q % p
if m == 1:
return False
return True
def is_nilpotent_number(n) -> bool:
"""
Check whether `n` is a nilpotent number. A number `n` is said to be
nilpotent if and only if every finite group of order `n` is nilpotent.
For more information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number
>>> from sympy import randprime
>>> is_nilpotent_number(21)
False
>>> is_nilpotent_number(randprime(1, 30)**12)
True
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A056867
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
return _is_nilpotent_number(factorint(n))
def is_abelian_number(n) -> bool:
"""
Check whether `n` is an abelian number. A number `n` is said to be abelian
if and only if every finite group of order `n` is abelian. For more
information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_abelian_number
>>> from sympy import randprime
>>> is_abelian_number(4)
True
>>> is_abelian_number(randprime(1, 2000)**2)
True
>>> is_abelian_number(60)
False
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A051532
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
return all(e < 3 for e in factors.values()) and _is_nilpotent_number(factors)
def is_cyclic_number(n) -> bool:
"""
Check whether `n` is a cyclic number. A number `n` is said to be cyclic
if and only if every finite group of order `n` is cyclic. For more
information see [1]_.
Examples
========
>>> from sympy.combinatorics.group_numbers import is_cyclic_number
>>> from sympy import randprime
>>> is_cyclic_number(15)
True
>>> is_cyclic_number(randprime(1, 2000)**2)
False
>>> is_cyclic_number(4)
False
References
==========
.. [1] Pakianathan, J., Shankar, K., Nilpotent Numbers,
The American Mathematical Monthly, 107(7), 631-634.
.. [2] https://oeis.org/A003277
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
return all(e == 1 for e in factors.values()) and _is_nilpotent_number(factors)
def _holder_formula(prime_factors):
r""" Number of groups of order `n`.
where `n` is squarefree and its prime factors are ``prime_factors``.
i.e., ``n == math.prod(prime_factors)``
Explanation
===========
When `n` is squarefree, the number of groups of order `n` is expressed by
.. math ::
\sum_{d \mid n} \prod_p \frac{p^{c(p, d)} - 1}{p - 1}
where `n=de`, `p` is the prime factor of `e`,
and `c(p, d)` is the number of prime factors `q` of `d` such that `q \equiv 1 \pmod{p}` [2]_.
The formula is elegant, but can be improved when implemented as an algorithm.
Since `n` is assumed to be squarefree, the divisor `d` of `n` can be identified with the power set of prime factors.
We let `N` be the set of prime factors of `n`.
`F = \{p \in N : \forall q \in N, q \not\equiv 1 \pmod{p} \}, M = N \setminus F`, we have the following.
.. math ::
\sum_{d \in 2^{M}} \prod_{p \in M \setminus d} \frac{p^{c(p, F \cup d)} - 1}{p - 1}
Practically, many prime factors are expected to be members of `F`, thus reducing computation time.
Parameters
==========
prime_factors : set
The set of prime factors of ``n``. where `n` is squarefree.
Returns
=======
int : Number of groups of order ``n``
Examples
========
>>> from sympy.combinatorics.group_numbers import _holder_formula
>>> _holder_formula({2}) # n = 2
1
>>> _holder_formula({2, 3}) # n = 2*3 = 6
2
See Also
========
groups_count
References
==========
.. [1] Otto Holder, Die Gruppen der Ordnungen p^3, pq^2, pqr, p^4,
Math. Ann. 43 pp. 301-412 (1893).
http://dx.doi.org/10.1007/BF01443651
.. [2] John H. Conway, Heiko Dietrich and E.A. O'Brien,
Counting groups: gnus, moas and other exotica
The Mathematical Intelligencer 30, 6-15 (2008)
https://doi.org/10.1007/BF02985731
"""
F = {p for p in prime_factors if all(q % p != 1 for q in prime_factors)}
M = prime_factors - F
s = 0
powerset = chain.from_iterable(combinations(M, r) for r in range(len(M)+1))
for ps in powerset:
ps = set(ps)
prod = 1
for p in M - ps:
c = len([q for q in F | ps if q % p == 1])
prod *= (p**c - 1) // (p - 1)
if not prod:
break
s += prod
return s
def groups_count(n):
r""" Number of groups of order `n`.
In [1]_, ``gnu(n)`` is given, so we follow this notation here as well.
Parameters
==========
n : Integer
``n`` is a positive integer
Returns
=======
int : ``gnu(n)``
Raises
======
ValueError
Number of groups of order ``n`` is unknown or not implemented.
For example, gnu(`2^{11}`) is not yet known.
On the other hand, gnu(12) is known to be 5,
but this has not yet been implemented in this function.
Examples
========
>>> from sympy.combinatorics.group_numbers import groups_count
>>> groups_count(3) # There is only one cyclic group of order 3
1
>>> # There are two groups of order 10: the cyclic group and the dihedral group
>>> groups_count(10)
2
See Also
========
is_cyclic_number
`n` is cyclic iff gnu(n) = 1
References
==========
.. [1] John H. Conway, Heiko Dietrich and E.A. O'Brien,
Counting groups: gnus, moas and other exotica
The Mathematical Intelligencer 30, 6-15 (2008)
https://doi.org/10.1007/BF02985731
.. [2] https://oeis.org/A000001
"""
n = as_int(n)
if n <= 0:
raise ValueError("n must be a positive integer, not %i" % n)
factors = factorint(n)
if len(factors) == 1:
(p, e) = list(factors.items())[0]
if p == 2:
A000679 = [1, 1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487367289]
if e < len(A000679):
return A000679[e]
if p == 3:
A090091 = [1, 1, 2, 5, 15, 67, 504, 9310, 1396077, 5937876645]
if e < len(A090091):
return A090091[e]
if e <= 2: # gnu(p) = 1, gnu(p**2) = 2
return e
if e == 3: # gnu(p**3) = 5
return 5
if e == 4: # if p is an odd prime, gnu(p**4) = 15
return 15
if e == 5: # if p >= 5, gnu(p**5) is expressed by the following equation
return 61 + 2*p + 2*gcd(p-1, 3) + gcd(p-1, 4)
if e == 6: # if p >= 6, gnu(p**6) is expressed by the following equation
return 3*p**2 + 39*p + 344 +\
24*gcd(p-1, 3) + 11*gcd(p-1, 4) + 2*gcd(p-1, 5)
if e == 7: # if p >= 7, gnu(p**7) is expressed by the following equation
if p == 5:
return 34297
return 3*p**5 + 12*p**4 + 44*p**3 + 170*p**2 + 707*p + 2455 +\
(4*p**2 + 44*p + 291)*gcd(p-1, 3) + (p**2 + 19*p + 135)*gcd(p-1, 4) + \
(3*p + 31)*gcd(p-1, 5) + 4*gcd(p-1, 7) + 5*gcd(p-1, 8) + gcd(p-1, 9)
if any(e > 1 for e in factors.values()): # n is not squarefree
# some known values for small n that have more than 1 factor and are not square free (https://oeis.org/A000001)
small = {12: 5, 18: 5, 20: 5, 24: 15, 28: 4, 36: 14, 40: 14, 44: 4, 45: 2, 48: 52,
50: 5, 52: 5, 54: 15, 56: 13, 60: 13, 63: 4, 68: 5, 72: 50, 75: 3, 76: 4,
80: 52, 84: 15, 88: 12, 90: 10, 92: 4}
if n in small:
return small[n]
raise ValueError("Number of groups of order n is unknown or not implemented")
if len(factors) == 2: # n is squarefree semiprime
p, q = list(factors.keys())
if p > q:
p, q = q, p
return 2 if q % p == 1 else 1
return _holder_formula(set(factors.keys()))
|