Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
9.56 kB
from sympy.assumptions.assume import global_assumptions
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.assumptions.ask import Q
from sympy.logic.inference import satisfiable
from sympy.logic.algorithms.lra_theory import UnhandledInput, ALLOWED_PRED
from sympy.matrices.kind import MatrixKind
from sympy.core.kind import NumberKind
from sympy.assumptions.assume import AppliedPredicate
from sympy.core.mul import Mul
from sympy.core.singleton import S
def lra_satask(proposition, assumptions=True, context=global_assumptions):
"""
Function to evaluate the proposition with assumptions using SAT algorithm
in conjunction with an Linear Real Arithmetic theory solver.
Used to handle inequalities. Should eventually be depreciated and combined
into satask, but infinity handling and other things need to be implemented
before that can happen.
"""
props = CNF.from_prop(proposition)
_props = CNF.from_prop(~proposition)
cnf = CNF.from_prop(assumptions)
assumptions = EncodedCNF()
assumptions.from_cnf(cnf)
context_cnf = CNF()
if context:
context_cnf = context_cnf.extend(context)
assumptions.add_from_cnf(context_cnf)
return check_satisfiability(props, _props, assumptions)
# Some predicates such as Q.prime can't be handled by lra_satask.
# For example, (x > 0) & (x < 1) & Q.prime(x) is unsat but lra_satask would think it was sat.
# WHITE_LIST is a list of predicates that can always be handled.
WHITE_LIST = ALLOWED_PRED | {Q.positive, Q.negative, Q.zero, Q.nonzero, Q.nonpositive, Q.nonnegative,
Q.extended_positive, Q.extended_negative, Q.extended_nonpositive,
Q.extended_negative, Q.extended_nonzero, Q.negative_infinite,
Q.positive_infinite}
def check_satisfiability(prop, _prop, factbase):
sat_true = factbase.copy()
sat_false = factbase.copy()
sat_true.add_from_cnf(prop)
sat_false.add_from_cnf(_prop)
all_pred, all_exprs = get_all_pred_and_expr_from_enc_cnf(sat_true)
for pred in all_pred:
if pred.function not in WHITE_LIST and pred.function != Q.ne:
raise UnhandledInput(f"LRASolver: {pred} is an unhandled predicate")
for expr in all_exprs:
if expr.kind == MatrixKind(NumberKind):
raise UnhandledInput(f"LRASolver: {expr} is of MatrixKind")
if expr == S.NaN:
raise UnhandledInput("LRASolver: nan")
# convert old assumptions into predicates and add them to sat_true and sat_false
# also check for unhandled predicates
for assm in extract_pred_from_old_assum(all_exprs):
n = len(sat_true.encoding)
if assm not in sat_true.encoding:
sat_true.encoding[assm] = n+1
sat_true.data.append([sat_true.encoding[assm]])
n = len(sat_false.encoding)
if assm not in sat_false.encoding:
sat_false.encoding[assm] = n+1
sat_false.data.append([sat_false.encoding[assm]])
sat_true = _preprocess(sat_true)
sat_false = _preprocess(sat_false)
can_be_true = satisfiable(sat_true, use_lra_theory=True) is not False
can_be_false = satisfiable(sat_false, use_lra_theory=True) is not False
if can_be_true and can_be_false:
return None
if can_be_true and not can_be_false:
return True
if not can_be_true and can_be_false:
return False
if not can_be_true and not can_be_false:
raise ValueError("Inconsistent assumptions")
def _preprocess(enc_cnf):
"""
Returns an encoded cnf with only Q.eq, Q.gt, Q.lt,
Q.ge, and Q.le predicate.
Converts every unequality into a disjunction of strict
inequalities. For example, x != 3 would become
x < 3 OR x > 3.
Also converts all negated Q.ne predicates into
equalities.
"""
# loops through each literal in each clause
# to construct a new, preprocessed encodedCNF
enc_cnf = enc_cnf.copy()
cur_enc = 1
rev_encoding = {value: key for key, value in enc_cnf.encoding.items()}
new_encoding = {}
new_data = []
for clause in enc_cnf.data:
new_clause = []
for lit in clause:
if lit == 0:
new_clause.append(lit)
new_encoding[lit] = False
continue
prop = rev_encoding[abs(lit)]
negated = lit < 0
sign = (lit > 0) - (lit < 0)
prop = _pred_to_binrel(prop)
if not isinstance(prop, AppliedPredicate):
if prop not in new_encoding:
new_encoding[prop] = cur_enc
cur_enc += 1
lit = new_encoding[prop]
new_clause.append(sign*lit)
continue
if negated and prop.function == Q.eq:
negated = False
prop = Q.ne(*prop.arguments)
if prop.function == Q.ne:
arg1, arg2 = prop.arguments
if negated:
new_prop = Q.eq(arg1, arg2)
if new_prop not in new_encoding:
new_encoding[new_prop] = cur_enc
cur_enc += 1
new_enc = new_encoding[new_prop]
new_clause.append(new_enc)
continue
else:
new_props = (Q.gt(arg1, arg2), Q.lt(arg1, arg2))
for new_prop in new_props:
if new_prop not in new_encoding:
new_encoding[new_prop] = cur_enc
cur_enc += 1
new_enc = new_encoding[new_prop]
new_clause.append(new_enc)
continue
if prop.function == Q.eq and negated:
assert False
if prop not in new_encoding:
new_encoding[prop] = cur_enc
cur_enc += 1
new_clause.append(new_encoding[prop]*sign)
new_data.append(new_clause)
assert len(new_encoding) >= cur_enc - 1
enc_cnf = EncodedCNF(new_data, new_encoding)
return enc_cnf
def _pred_to_binrel(pred):
if not isinstance(pred, AppliedPredicate):
return pred
if pred.function in pred_to_pos_neg_zero:
f = pred_to_pos_neg_zero[pred.function]
if f is False:
return False
pred = f(pred.arguments[0])
if pred.function == Q.positive:
pred = Q.gt(pred.arguments[0], 0)
elif pred.function == Q.negative:
pred = Q.lt(pred.arguments[0], 0)
elif pred.function == Q.zero:
pred = Q.eq(pred.arguments[0], 0)
elif pred.function == Q.nonpositive:
pred = Q.le(pred.arguments[0], 0)
elif pred.function == Q.nonnegative:
pred = Q.ge(pred.arguments[0], 0)
elif pred.function == Q.nonzero:
pred = Q.ne(pred.arguments[0], 0)
return pred
pred_to_pos_neg_zero = {
Q.extended_positive: Q.positive,
Q.extended_negative: Q.negative,
Q.extended_nonpositive: Q.nonpositive,
Q.extended_negative: Q.negative,
Q.extended_nonzero: Q.nonzero,
Q.negative_infinite: False,
Q.positive_infinite: False
}
def get_all_pred_and_expr_from_enc_cnf(enc_cnf):
all_exprs = set()
all_pred = set()
for pred in enc_cnf.encoding.keys():
if isinstance(pred, AppliedPredicate):
all_pred.add(pred)
all_exprs.update(pred.arguments)
return all_pred, all_exprs
def extract_pred_from_old_assum(all_exprs):
"""
Returns a list of relevant new assumption predicate
based on any old assumptions.
Raises an UnhandledInput exception if any of the assumptions are
unhandled.
Ignored predicate:
- commutative
- complex
- algebraic
- transcendental
- extended_real
- real
- all matrix predicate
- rational
- irrational
Example
=======
>>> from sympy.assumptions.lra_satask import extract_pred_from_old_assum
>>> from sympy import symbols
>>> x, y = symbols("x y", positive=True)
>>> extract_pred_from_old_assum([x, y, 2])
[Q.positive(x), Q.positive(y)]
"""
ret = []
for expr in all_exprs:
if not hasattr(expr, "free_symbols"):
continue
if len(expr.free_symbols) == 0:
continue
if expr.is_real is not True:
raise UnhandledInput(f"LRASolver: {expr} must be real")
# test for I times imaginary variable; such expressions are considered real
if isinstance(expr, Mul) and any(arg.is_real is not True for arg in expr.args):
raise UnhandledInput(f"LRASolver: {expr} must be real")
if expr.is_integer == True and expr.is_zero != True:
raise UnhandledInput(f"LRASolver: {expr} is an integer")
if expr.is_integer == False:
raise UnhandledInput(f"LRASolver: {expr} can't be an integer")
if expr.is_rational == False:
raise UnhandledInput(f"LRASolver: {expr} is irational")
if expr.is_zero:
ret.append(Q.zero(expr))
elif expr.is_positive:
ret.append(Q.positive(expr))
elif expr.is_negative:
ret.append(Q.negative(expr))
elif expr.is_nonzero:
ret.append(Q.nonzero(expr))
elif expr.is_nonpositive:
ret.append(Q.nonpositive(expr))
elif expr.is_nonnegative:
ret.append(Q.nonnegative(expr))
return ret