Spaces:
Sleeping
Sleeping
File size: 9,563 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from sympy.assumptions.assume import global_assumptions
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.assumptions.ask import Q
from sympy.logic.inference import satisfiable
from sympy.logic.algorithms.lra_theory import UnhandledInput, ALLOWED_PRED
from sympy.matrices.kind import MatrixKind
from sympy.core.kind import NumberKind
from sympy.assumptions.assume import AppliedPredicate
from sympy.core.mul import Mul
from sympy.core.singleton import S
def lra_satask(proposition, assumptions=True, context=global_assumptions):
"""
Function to evaluate the proposition with assumptions using SAT algorithm
in conjunction with an Linear Real Arithmetic theory solver.
Used to handle inequalities. Should eventually be depreciated and combined
into satask, but infinity handling and other things need to be implemented
before that can happen.
"""
props = CNF.from_prop(proposition)
_props = CNF.from_prop(~proposition)
cnf = CNF.from_prop(assumptions)
assumptions = EncodedCNF()
assumptions.from_cnf(cnf)
context_cnf = CNF()
if context:
context_cnf = context_cnf.extend(context)
assumptions.add_from_cnf(context_cnf)
return check_satisfiability(props, _props, assumptions)
# Some predicates such as Q.prime can't be handled by lra_satask.
# For example, (x > 0) & (x < 1) & Q.prime(x) is unsat but lra_satask would think it was sat.
# WHITE_LIST is a list of predicates that can always be handled.
WHITE_LIST = ALLOWED_PRED | {Q.positive, Q.negative, Q.zero, Q.nonzero, Q.nonpositive, Q.nonnegative,
Q.extended_positive, Q.extended_negative, Q.extended_nonpositive,
Q.extended_negative, Q.extended_nonzero, Q.negative_infinite,
Q.positive_infinite}
def check_satisfiability(prop, _prop, factbase):
sat_true = factbase.copy()
sat_false = factbase.copy()
sat_true.add_from_cnf(prop)
sat_false.add_from_cnf(_prop)
all_pred, all_exprs = get_all_pred_and_expr_from_enc_cnf(sat_true)
for pred in all_pred:
if pred.function not in WHITE_LIST and pred.function != Q.ne:
raise UnhandledInput(f"LRASolver: {pred} is an unhandled predicate")
for expr in all_exprs:
if expr.kind == MatrixKind(NumberKind):
raise UnhandledInput(f"LRASolver: {expr} is of MatrixKind")
if expr == S.NaN:
raise UnhandledInput("LRASolver: nan")
# convert old assumptions into predicates and add them to sat_true and sat_false
# also check for unhandled predicates
for assm in extract_pred_from_old_assum(all_exprs):
n = len(sat_true.encoding)
if assm not in sat_true.encoding:
sat_true.encoding[assm] = n+1
sat_true.data.append([sat_true.encoding[assm]])
n = len(sat_false.encoding)
if assm not in sat_false.encoding:
sat_false.encoding[assm] = n+1
sat_false.data.append([sat_false.encoding[assm]])
sat_true = _preprocess(sat_true)
sat_false = _preprocess(sat_false)
can_be_true = satisfiable(sat_true, use_lra_theory=True) is not False
can_be_false = satisfiable(sat_false, use_lra_theory=True) is not False
if can_be_true and can_be_false:
return None
if can_be_true and not can_be_false:
return True
if not can_be_true and can_be_false:
return False
if not can_be_true and not can_be_false:
raise ValueError("Inconsistent assumptions")
def _preprocess(enc_cnf):
"""
Returns an encoded cnf with only Q.eq, Q.gt, Q.lt,
Q.ge, and Q.le predicate.
Converts every unequality into a disjunction of strict
inequalities. For example, x != 3 would become
x < 3 OR x > 3.
Also converts all negated Q.ne predicates into
equalities.
"""
# loops through each literal in each clause
# to construct a new, preprocessed encodedCNF
enc_cnf = enc_cnf.copy()
cur_enc = 1
rev_encoding = {value: key for key, value in enc_cnf.encoding.items()}
new_encoding = {}
new_data = []
for clause in enc_cnf.data:
new_clause = []
for lit in clause:
if lit == 0:
new_clause.append(lit)
new_encoding[lit] = False
continue
prop = rev_encoding[abs(lit)]
negated = lit < 0
sign = (lit > 0) - (lit < 0)
prop = _pred_to_binrel(prop)
if not isinstance(prop, AppliedPredicate):
if prop not in new_encoding:
new_encoding[prop] = cur_enc
cur_enc += 1
lit = new_encoding[prop]
new_clause.append(sign*lit)
continue
if negated and prop.function == Q.eq:
negated = False
prop = Q.ne(*prop.arguments)
if prop.function == Q.ne:
arg1, arg2 = prop.arguments
if negated:
new_prop = Q.eq(arg1, arg2)
if new_prop not in new_encoding:
new_encoding[new_prop] = cur_enc
cur_enc += 1
new_enc = new_encoding[new_prop]
new_clause.append(new_enc)
continue
else:
new_props = (Q.gt(arg1, arg2), Q.lt(arg1, arg2))
for new_prop in new_props:
if new_prop not in new_encoding:
new_encoding[new_prop] = cur_enc
cur_enc += 1
new_enc = new_encoding[new_prop]
new_clause.append(new_enc)
continue
if prop.function == Q.eq and negated:
assert False
if prop not in new_encoding:
new_encoding[prop] = cur_enc
cur_enc += 1
new_clause.append(new_encoding[prop]*sign)
new_data.append(new_clause)
assert len(new_encoding) >= cur_enc - 1
enc_cnf = EncodedCNF(new_data, new_encoding)
return enc_cnf
def _pred_to_binrel(pred):
if not isinstance(pred, AppliedPredicate):
return pred
if pred.function in pred_to_pos_neg_zero:
f = pred_to_pos_neg_zero[pred.function]
if f is False:
return False
pred = f(pred.arguments[0])
if pred.function == Q.positive:
pred = Q.gt(pred.arguments[0], 0)
elif pred.function == Q.negative:
pred = Q.lt(pred.arguments[0], 0)
elif pred.function == Q.zero:
pred = Q.eq(pred.arguments[0], 0)
elif pred.function == Q.nonpositive:
pred = Q.le(pred.arguments[0], 0)
elif pred.function == Q.nonnegative:
pred = Q.ge(pred.arguments[0], 0)
elif pred.function == Q.nonzero:
pred = Q.ne(pred.arguments[0], 0)
return pred
pred_to_pos_neg_zero = {
Q.extended_positive: Q.positive,
Q.extended_negative: Q.negative,
Q.extended_nonpositive: Q.nonpositive,
Q.extended_negative: Q.negative,
Q.extended_nonzero: Q.nonzero,
Q.negative_infinite: False,
Q.positive_infinite: False
}
def get_all_pred_and_expr_from_enc_cnf(enc_cnf):
all_exprs = set()
all_pred = set()
for pred in enc_cnf.encoding.keys():
if isinstance(pred, AppliedPredicate):
all_pred.add(pred)
all_exprs.update(pred.arguments)
return all_pred, all_exprs
def extract_pred_from_old_assum(all_exprs):
"""
Returns a list of relevant new assumption predicate
based on any old assumptions.
Raises an UnhandledInput exception if any of the assumptions are
unhandled.
Ignored predicate:
- commutative
- complex
- algebraic
- transcendental
- extended_real
- real
- all matrix predicate
- rational
- irrational
Example
=======
>>> from sympy.assumptions.lra_satask import extract_pred_from_old_assum
>>> from sympy import symbols
>>> x, y = symbols("x y", positive=True)
>>> extract_pred_from_old_assum([x, y, 2])
[Q.positive(x), Q.positive(y)]
"""
ret = []
for expr in all_exprs:
if not hasattr(expr, "free_symbols"):
continue
if len(expr.free_symbols) == 0:
continue
if expr.is_real is not True:
raise UnhandledInput(f"LRASolver: {expr} must be real")
# test for I times imaginary variable; such expressions are considered real
if isinstance(expr, Mul) and any(arg.is_real is not True for arg in expr.args):
raise UnhandledInput(f"LRASolver: {expr} must be real")
if expr.is_integer == True and expr.is_zero != True:
raise UnhandledInput(f"LRASolver: {expr} is an integer")
if expr.is_integer == False:
raise UnhandledInput(f"LRASolver: {expr} can't be an integer")
if expr.is_rational == False:
raise UnhandledInput(f"LRASolver: {expr} is irational")
if expr.is_zero:
ret.append(Q.zero(expr))
elif expr.is_positive:
ret.append(Q.positive(expr))
elif expr.is_negative:
ret.append(Q.negative(expr))
elif expr.is_nonzero:
ret.append(Q.nonzero(expr))
elif expr.is_nonpositive:
ret.append(Q.nonpositive(expr))
elif expr.is_nonnegative:
ret.append(Q.nonnegative(expr))
return ret
|