Spaces:
Running
Running
from flask import Flask, render_template, request, redirect, url_for, flash, send_file | |
import os | |
import pandas as pd | |
from werkzeug.utils import secure_filename | |
from joblib import load | |
import numpy as np | |
from sklearn.preprocessing import LabelEncoder | |
from time import time | |
app = Flask(__name__) | |
# Set the secret key for session management | |
app.secret_key = os.urandom(24) | |
# Configurations | |
UPLOAD_FOLDER = "uploads/" | |
DATA_FOLDER = "data/" | |
# Define the model directory and label encoder directory | |
MODEL_DIR = r'./Model' | |
LABEL_ENOCDER_DIR = r'./Label_encoders' | |
# Global file names for outputs; these will be updated per prediction. | |
PRED_OUTPUT_FILE = "data/pred_output.csv" | |
CLASS_OUTPUT_FILE = "data/class_output.csv" | |
ALLOWED_EXTENSIONS = {'csv', 'xlsx'} | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) | |
# ------------------------------ | |
# Load Models and Label Encoders | |
# ------------------------------ | |
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib')) | |
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib')) | |
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib')) | |
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib')) | |
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib')) | |
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib')) | |
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib')) | |
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib')) | |
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib')) | |
blk_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_blk.joblib')) | |
wht_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_wht.joblib')) | |
open_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_open.joblib')) | |
pav_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_pav.joblib')) | |
blk_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_blk.joblib')) | |
wht_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_wht.joblib')) | |
open_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_open.joblib')) | |
pav_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_pav.joblib')) | |
blk_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_blk.joblib')) | |
wht_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_wht.joblib')) | |
open_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_open.joblib')) | |
pav_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_pav.joblib')) | |
blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_blk.joblib')) | |
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib')) | |
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib')) | |
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib')) | |
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', | |
'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav', | |
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', | |
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value', | |
'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value', | |
'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value', | |
'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value', | |
'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value', | |
'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value'] | |
loaded_label_encoder = {} | |
for val in encoder_list: | |
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib") | |
loaded_label_encoder[val] = load(encoder_path) | |
# ------------------------------ | |
# Utility: Allowed File Check | |
# ------------------------------ | |
def allowed_file(filename): | |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS | |
# ------------------------------ | |
# Routes | |
# ------------------------------ | |
def index(): | |
return render_template('index.html') | |
def predict(): | |
if 'file' not in request.files: | |
flash('No file part', 'error') | |
return redirect(request.url) | |
file = request.files['file'] | |
if file.filename == '': | |
flash('No selected file', 'error') | |
return redirect(request.url) | |
if file and allowed_file(file.filename): | |
filename = secure_filename(file.filename) | |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) | |
file.save(filepath) | |
# Convert file to DataFrame | |
if filename.endswith('.csv'): | |
df = pd.read_csv(filepath) | |
else: | |
df = pd.read_excel(filepath) | |
# Process the DataFrame and generate predictions and classification analysis. | |
df_pred, dx_class = process_dataframe(df) | |
# Save output files with a timestamp (you can also store in session if needed) | |
current_date = pd.Timestamp.now().strftime("%Y-%m-%d") | |
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE | |
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv' | |
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv' | |
df_pred.to_csv(PRED_OUTPUT_FILE, index=False) | |
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False) | |
# Redirect to report view; default to prediction report, page 1. | |
return redirect(url_for('report_view', report_type='pred', page=1)) | |
else: | |
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error') | |
return redirect(request.url) | |
def process_dataframe(df): | |
try: | |
# Define the columns needed for two parts | |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', | |
'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt'] | |
required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav'] | |
# Create two DataFrames: one for prediction and one for classification. | |
df_pred = df[required_columns].copy() | |
df_class = df[required_columns_2].fillna("NA").copy() | |
# Transform categorical columns for prediction DataFrame using the label encoders. | |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']: | |
df_pred[col] = loaded_label_encoder[col].transform(df_pred[col]) | |
# Update the classification DataFrame with the transformed prediction columns. | |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']: | |
df_class[col] = df_pred[col] | |
# Transform the extra columns in the classification DataFrame. | |
for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']: | |
df_class[col] = loaded_label_encoder[col].transform(df_class[col]) | |
# Convert both DataFrames to float (or handle as needed). | |
df_pred = df_pred.astype(float) | |
df_class = df_class.astype(float) | |
# ------------------------- | |
# Prediction Report Section | |
# ------------------------- | |
# Use the prediction DataFrame for price predictions. | |
x = df_pred.copy() | |
df_pred['GIA_Predicted'] = gia_model.predict(x) | |
df_pred['Grade_Predicted'] = grade_model.predict(x) | |
df_pred['ByGrade_Predicted'] = bygrade_model.predict(x) | |
df_pred['Makable_Predicted'] = makable_model.predict(x) | |
df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted'] | |
df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted'] | |
df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted'] | |
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted'] | |
# ------------------------- | |
# Classification Report Section | |
# ------------------------- | |
# For classification, use df_class (which has extra columns). | |
x2 = df_class.copy() | |
dx = df_pred.copy() # Start with the prediction data. | |
dx['col_change'] = col_model.predict(x) | |
dx['cts_change'] = cts_model.predict(x) | |
dx['cut_change'] = cut_model.predict(x) | |
dx['qua_change'] = qua_model.predict(x) | |
dx['shp_change'] = shp_model.predict(x) | |
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2) | |
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2) | |
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2) | |
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2) | |
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2) | |
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2) | |
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2) | |
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2) | |
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2) | |
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2) | |
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2) | |
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2) | |
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2) | |
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2) | |
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2) | |
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2) | |
# Inverse transform classification predictions. | |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change']) | |
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change']) | |
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change']) | |
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change']) | |
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change']) | |
dx['Change_Blk_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Blk_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Blk_Eng_to_Mkbl_value']) | |
dx['Change_Wht_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Wht_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Wht_Eng_to_Mkbl_value']) | |
dx['Change_Open_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Open_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Open_Eng_to_Mkbl_value']) | |
dx['Change_Pav_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Pav_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Pav_Eng_to_Mkbl_value']) | |
dx['Change_Blk_Eng_to_Grd_value'] = loaded_label_encoder['Change_Blk_Eng_to_Grd_value'].inverse_transform(dx['Change_Blk_Eng_to_Grd_value']) | |
dx['Change_Wht_Eng_to_Grd_value'] = loaded_label_encoder['Change_Wht_Eng_to_Grd_value'].inverse_transform(dx['Change_Wht_Eng_to_Grd_value']) | |
dx['Change_Open_Eng_to_Grd_value'] = loaded_label_encoder['Change_Open_Eng_to_Grd_value'].inverse_transform(dx['Change_Open_Eng_to_Grd_value']) | |
dx['Change_Pav_Eng_to_Grd_value'] = loaded_label_encoder['Change_Pav_Eng_to_Grd_value'].inverse_transform(dx['Change_Pav_Eng_to_Grd_value']) | |
dx['Change_Blk_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Blk_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Blk_Eng_to_ByGrd_value']) | |
dx['Change_Wht_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Wht_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Wht_Eng_to_ByGrd_value']) | |
dx['Change_Open_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Open_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Open_Eng_to_ByGrd_value']) | |
dx['Change_Pav_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Pav_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Pav_Eng_to_ByGrd_value']) | |
dx['Change_Blk_Eng_to_Gia_value'] = loaded_label_encoder['Change_Blk_Eng_to_Gia_value'].inverse_transform(dx['Change_Blk_Eng_to_Gia_value']) | |
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value']) | |
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value']) | |
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value']) | |
return df_pred, dx.head(len(df_pred)) # Return full DataFrames for pagination later. | |
except Exception as e: | |
flash(f'Error processing file: {e}', 'error') | |
return pd.DataFrame(), pd.DataFrame() | |
# ------------------------------ | |
# Report View Route with Pagination & Toggle | |
# ------------------------------ | |
def report_view(): | |
# Get query parameters: report_type (pred or class) and page number. | |
report_type = request.args.get('report_type', 'pred') | |
try: | |
page = int(request.args.get('page', 1)) | |
except ValueError: | |
page = 1 | |
per_page = 15 # records per page | |
# Read the appropriate CSV file. | |
if report_type == 'pred': | |
df = pd.read_csv(PRED_OUTPUT_FILE) | |
else: | |
df = pd.read_csv(CLASS_OUTPUT_FILE) | |
# Calculate pagination indices. | |
start_idx = (page - 1) * per_page | |
end_idx = start_idx + per_page | |
total_records = len(df) | |
# Slice the DataFrame for the current page. | |
df_page = df.iloc[start_idx:end_idx] | |
table_html = df_page.to_html(classes="data-table", index=False) | |
# Determine if previous/next pages exist. | |
has_prev = page > 1 | |
has_next = end_idx < total_records | |
return render_template('output.html', | |
table_html=table_html, | |
report_type=report_type, | |
page=page, | |
has_prev=has_prev, | |
has_next=has_next) | |
# ------------------------------ | |
# Download Routes (remain unchanged) | |
# ------------------------------ | |
def download_pred(): | |
return send_file(PRED_OUTPUT_FILE, as_attachment=True) | |
def download_class(): | |
return send_file(CLASS_OUTPUT_FILE, as_attachment=True) | |
if __name__ == "__main__": | |
app.run(debug=True) | |