DiamRapo / app.py
WebashalarForML's picture
Update app.py
21b2af3 verified
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
import os
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load
import numpy as np
from sklearn.preprocessing import LabelEncoder
from time import time
app = Flask(__name__)
# Set the secret key for session management
app.secret_key = os.urandom(24)
# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"
# Define the model directory and label encoder directory
MODEL_DIR = r'./Model'
LABEL_ENOCDER_DIR = r'./Label_encoders'
# Global file names for outputs; these will be updated per prediction.
PRED_OUTPUT_FILE = "data/pred_output.csv"
CLASS_OUTPUT_FILE = "data/class_output.csv"
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# ------------------------------
# Load Models and Label Encoders
# ------------------------------
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
blk_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_blk.joblib'))
wht_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_wht.joblib'))
open_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_open.joblib'))
pav_eng_to_mkbl_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_mkbl_pav.joblib'))
blk_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_blk.joblib'))
wht_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_wht.joblib'))
open_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_open.joblib'))
pav_eng_to_grade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_grade_pav.joblib'))
blk_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_blk.joblib'))
wht_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_wht.joblib'))
open_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_open.joblib'))
pav_eng_to_bygrade_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_bygrade_pav.joblib'))
blk_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_blk.joblib'))
wht_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_wht.joblib'))
open_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_open.joblib'))
pav_eng_to_gia_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_gia_pav.joblib'))
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value']
loaded_label_encoder = {}
for val in encoder_list:
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
loaded_label_encoder[val] = load(encoder_path)
# ------------------------------
# Utility: Allowed File Check
# ------------------------------
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# ------------------------------
# Routes
# ------------------------------
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if 'file' not in request.files:
flash('No file part', 'error')
return redirect(request.url)
file = request.files['file']
if file.filename == '':
flash('No selected file', 'error')
return redirect(request.url)
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Convert file to DataFrame
if filename.endswith('.csv'):
df = pd.read_csv(filepath)
else:
df = pd.read_excel(filepath)
# Process the DataFrame and generate predictions and classification analysis.
df_pred, dx_class = process_dataframe(df)
# Save output files with a timestamp (you can also store in session if needed)
current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}.csv'
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}.csv'
df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
# Redirect to report view; default to prediction report, page 1.
return redirect(url_for('report_view', report_type='pred', page=1))
else:
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
return redirect(request.url)
def process_dataframe(df):
try:
# Define the columns needed for two parts
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut',
'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
required_columns_2 = required_columns + ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']
# Create two DataFrames: one for prediction and one for classification.
df_pred = df[required_columns].copy()
df_class = df[required_columns_2].fillna("NA").copy()
# Transform categorical columns for prediction DataFrame using the label encoders.
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
# Update the classification DataFrame with the transformed prediction columns.
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
df_class[col] = df_pred[col]
# Transform the extra columns in the classification DataFrame.
for col in ['EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
df_class[col] = loaded_label_encoder[col].transform(df_class[col])
# Convert both DataFrames to float (or handle as needed).
df_pred = df_pred.astype(float)
df_class = df_class.astype(float)
# -------------------------
# Prediction Report Section
# -------------------------
# Use the prediction DataFrame for price predictions.
x = df_pred.copy()
df_pred['GIA_Predicted'] = gia_model.predict(x)
df_pred['Grade_Predicted'] = grade_model.predict(x)
df_pred['ByGrade_Predicted'] = bygrade_model.predict(x)
df_pred['Makable_Predicted'] = makable_model.predict(x)
df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
# -------------------------
# Classification Report Section
# -------------------------
# For classification, use df_class (which has extra columns).
x2 = df_class.copy()
dx = df_pred.copy() # Start with the prediction data.
dx['col_change'] = col_model.predict(x)
dx['cts_change'] = cts_model.predict(x)
dx['cut_change'] = cut_model.predict(x)
dx['qua_change'] = qua_model.predict(x)
dx['shp_change'] = shp_model.predict(x)
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x2)
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x2)
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x2)
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x2)
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x2)
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x2)
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x2)
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x2)
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x2)
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x2)
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x2)
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x2)
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x2)
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x2)
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x2)
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x2)
# Inverse transform classification predictions.
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
dx['Change_Blk_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Blk_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Blk_Eng_to_Mkbl_value'])
dx['Change_Wht_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Wht_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Wht_Eng_to_Mkbl_value'])
dx['Change_Open_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Open_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Open_Eng_to_Mkbl_value'])
dx['Change_Pav_Eng_to_Mkbl_value'] = loaded_label_encoder['Change_Pav_Eng_to_Mkbl_value'].inverse_transform(dx['Change_Pav_Eng_to_Mkbl_value'])
dx['Change_Blk_Eng_to_Grd_value'] = loaded_label_encoder['Change_Blk_Eng_to_Grd_value'].inverse_transform(dx['Change_Blk_Eng_to_Grd_value'])
dx['Change_Wht_Eng_to_Grd_value'] = loaded_label_encoder['Change_Wht_Eng_to_Grd_value'].inverse_transform(dx['Change_Wht_Eng_to_Grd_value'])
dx['Change_Open_Eng_to_Grd_value'] = loaded_label_encoder['Change_Open_Eng_to_Grd_value'].inverse_transform(dx['Change_Open_Eng_to_Grd_value'])
dx['Change_Pav_Eng_to_Grd_value'] = loaded_label_encoder['Change_Pav_Eng_to_Grd_value'].inverse_transform(dx['Change_Pav_Eng_to_Grd_value'])
dx['Change_Blk_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Blk_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Blk_Eng_to_ByGrd_value'])
dx['Change_Wht_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Wht_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Wht_Eng_to_ByGrd_value'])
dx['Change_Open_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Open_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Open_Eng_to_ByGrd_value'])
dx['Change_Pav_Eng_to_ByGrd_value'] = loaded_label_encoder['Change_Pav_Eng_to_ByGrd_value'].inverse_transform(dx['Change_Pav_Eng_to_ByGrd_value'])
dx['Change_Blk_Eng_to_Gia_value'] = loaded_label_encoder['Change_Blk_Eng_to_Gia_value'].inverse_transform(dx['Change_Blk_Eng_to_Gia_value'])
dx['Change_Wht_Eng_to_Gia_value'] = loaded_label_encoder['Change_Wht_Eng_to_Gia_value'].inverse_transform(dx['Change_Wht_Eng_to_Gia_value'])
dx['Change_Open_Eng_to_Gia_value'] = loaded_label_encoder['Change_Open_Eng_to_Gia_value'].inverse_transform(dx['Change_Open_Eng_to_Gia_value'])
dx['Change_Pav_Eng_to_Gia_value'] = loaded_label_encoder['Change_Pav_Eng_to_Gia_value'].inverse_transform(dx['Change_Pav_Eng_to_Gia_value'])
return df_pred, dx.head(len(df_pred)) # Return full DataFrames for pagination later.
except Exception as e:
flash(f'Error processing file: {e}', 'error')
return pd.DataFrame(), pd.DataFrame()
# ------------------------------
# Report View Route with Pagination & Toggle
# ------------------------------
@app.route('/report')
def report_view():
# Get query parameters: report_type (pred or class) and page number.
report_type = request.args.get('report_type', 'pred')
try:
page = int(request.args.get('page', 1))
except ValueError:
page = 1
per_page = 15 # records per page
# Read the appropriate CSV file.
if report_type == 'pred':
df = pd.read_csv(PRED_OUTPUT_FILE)
else:
df = pd.read_csv(CLASS_OUTPUT_FILE)
# Calculate pagination indices.
start_idx = (page - 1) * per_page
end_idx = start_idx + per_page
total_records = len(df)
# Slice the DataFrame for the current page.
df_page = df.iloc[start_idx:end_idx]
table_html = df_page.to_html(classes="data-table", index=False)
# Determine if previous/next pages exist.
has_prev = page > 1
has_next = end_idx < total_records
return render_template('output.html',
table_html=table_html,
report_type=report_type,
page=page,
has_prev=has_prev,
has_next=has_next)
# ------------------------------
# Download Routes (remain unchanged)
# ------------------------------
@app.route('/download_pred', methods=['GET'])
def download_pred():
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
@app.route('/download_class', methods=['GET'])
def download_class():
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
if __name__ == "__main__":
app.run(debug=True)