DiamRapo / app.py
WebashalarForML's picture
Rename app2.py to app.py
31fd85f verified
raw
history blame
12.9 kB
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
import os
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load
import numpy as np
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from sklearn.metrics.pairwise import cosine_similarity
from time import time
app = Flask(__name__)
# Set the secret key for session management
app.secret_key = os.urandom(24)
# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"
# Define the model directory (ensuring correct path formatting)
MODEL_DIR = r'.\Model'
LABEL_ENOCDER_DIR = r'.\Label_encoders'
# Define the output file path
PRED_OUTPUT_FILE = "data/pred_output.csv"
CLASS_OUTPUT_FILE = "data/class_output.csv"
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# Ensure the upload folder exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
# Load models using os.path.join for better cross-platform compatibility
# linear_regression_model
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
# classifier_model
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
# print("===================================models==================================")
# print(gia_model)
# print(grade_model)
# print(bygrade_model)
# print(makable_model)
# Load label encoders
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
#loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
loaded_label_encoder = {}
for val in encoder_list:
#encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
loaded_label_encoder[val] = load(encoder_path)
# print(loaded_label_encoder)
# Ensure upload folder exists
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if 'file' not in request.files:
flash('No file part', 'error')
return redirect(request.url)
file = request.files['file']
if file.filename == '':
flash('No selected file', 'error')
return redirect(request.url)
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Convert to DataFrame
if filename.endswith('.csv'):
df = pd.read_csv(filepath)
else:
df = pd.read_excel(filepath)
# Preprocess DataFrame
print("===================================process_dataframe=0==================================")
df,dx = process_dataframe(df)
print("===================================process_dataframe=5==================================")
return render_template('output.html', df=df.to_html(), dx=dx.to_html())
else:
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
print('Invalid file type. Only CSV and Excel files are allowed.')
return redirect(request.url)
def process_dataframe(df):
try:
print("===================================process_dataframe=1==================================")
# 'EngLab' is not in the required columns
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
# for prediction
df = df[required_columns]
df = df.copy()
# for classification
# df[col] = df[col].map(lambda x: loaded_label_encoder[col].transform([x])[0] if x in loaded_label_encoder[col].classes_ else np.nan)
# Transform categorical features using loaded label encoders
df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"])
df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
#EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
df=df.astype(float)
print(df.head())
dx = df.copy()
print(df.columns)
x= df.copy()
# print("Model expects", gia_model.n_features_in_, "features.")
# print("X_features shape:", x.shape)
print("===================================process_dataframe=2==================================")
# ================================================================================================
# Prediction report
# ================================================================================================
# Predict prices
df['GIA_Predicted'] = gia_model.predict(x)
df['Grade_Predicted'] = grade_model.predict(x)
df['ByGrade_Predicted'] = bygrade_model.predict(x)
df['Makable_Predicted'] = makable_model.predict(x)
# Compute differences
df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
print(df.head())
predictions = df.to_dict(orient='records')
analysis = df.describe().to_html()
#print(analysis)
#print(predictions)
print("===================================process_dataframe=3==================================")
# ================================================================================================
# Classification report
# ================================================================================================
dx['col_change'] = col_model.predict(x)
dx['cts_change'] = cts_model.predict(x)
dx['cut_change'] = cut_model.predict(x)
dx['qua_change'] = qua_model.predict(x)
dx['shp_change'] = shp_model.predict(x)
# Inverse transform the predictions
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
print(dx.head())
print("===================================process_dataframe=4==================================")
# Save output file with date and time
time = str(pd.Timestamp.now().strftime("%Y-%m-%d"))
#saving the output file
global PRED_OUTPUT_FILE
PRED_OUTPUT_FILE = f'data/prediction_output_{time}.csv'
df.to_csv(PRED_OUTPUT_FILE, index=False)
#saving the output file
global CLASS_OUTPUT_FILE
CLASS_OUTPUT_FILE = f'data/classification_output_{time}.csv'
dx.to_csv(CLASS_OUTPUT_FILE, index=False)
print("===================================Output file saved as output.csv===================================")
return df.head(), dx.head()
except Exception as e:
print(f'Error processing file: {e}')
flash(f'Error processing file: {e}', 'error')
return pd.DataFrame(), pd.DataFrame()
def classification_report(df):
try:
classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
"MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
# Make predictions
classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
# Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
)
# Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
classifcation_data['Change_shape_value'] = classifcation_data.apply(
lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
)
# Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
classifcation_data['Change_quality_value'] = classifcation_data.apply(
lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
)
# Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
classifcation_data['Change_color_value'] = classifcation_data.apply(
lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
)
# Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
classifcation_data['Change_cut_value'] = classifcation_data.apply(
lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
)
# Generate classification report
return classifcation_data
except Exception as e:
flash(f'Error generating classification report: {e}', 'error')
print(f'Error generating classification report: {e}')
return None
@app.route('/download_pred', methods=['GET'])
def download_pred():
"""Serve the output.csv file for download."""
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
@app.route('/download_class', methods=['GET'])
def download_class():
"""Serve the output.csv file for download."""
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
if __name__ == "__main__":
app.run(debug=True)