File size: 13,167 Bytes
43c7e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
import os
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load
import numpy as np
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from sklearn.metrics.pairwise import cosine_similarity
from time import time

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"

# Define the model directory (ensuring correct path formatting)
MODEL_DIR = r'.\Model'
LABEL_ENOCDER_DIR = r'.\Label_encoders'

# Define the output file path
PRED_OUTPUT_FILE = "data/pred_output.csv"
CLASS_OUTPUT_FILE = "data/class_output.csv"

ALLOWED_EXTENSIONS = {'csv', 'xlsx'}

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

# Ensure the upload folder exists
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

# Load models using os.path.join for better cross-platform compatibility

# linear_regression_model
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))

# classifier_model
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))

# print("===================================models==================================")
# print(gia_model)
# print(grade_model)  
# print(bygrade_model)
# print(makable_model)

# Load label encoders
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
                'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
#loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
loaded_label_encoder = {}
for val in encoder_list:
    #encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
    encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
    loaded_label_encoder[val] = load(encoder_path)
    
# print(loaded_label_encoder)

# Ensure upload folder exists
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        flash('No file part', 'error')
        return redirect(request.url)
    
    file = request.files['file']
    if file.filename == '':
        flash('No selected file', 'error')
        return redirect(request.url)
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        
        # Convert to DataFrame
        if filename.endswith('.csv'):
            df = pd.read_csv(filepath)
        else:
            df = pd.read_excel(filepath)
        
        # Preprocess DataFrame
        print("===================================process_dataframe=0==================================")
        df,dx = process_dataframe(df)
        print("===================================process_dataframe=5==================================")
        return render_template('output.html', df=df.to_html(), dx=dx.to_html())
    else:
        flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
        print('Invalid file type. Only CSV and Excel files are allowed.')
        return redirect(request.url)

def process_dataframe(df):
    try:
        print("===================================process_dataframe=1==================================")
        # 'EngLab' is not in the required columns
        required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
                            'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
        
        # for prediction
        df = df[required_columns]
        df = df.copy()
        # for classification
        
        
        # df[col] = df[col].map(lambda x: loaded_label_encoder[col].transform([x])[0] if x in loaded_label_encoder[col].classes_ else np.nan)

        # Transform categorical features using loaded label encoders
        df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
        df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"]) 
        df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
        df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
        df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
        df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
        df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
        df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
        df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
        df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
        #EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
        
        df=df.astype(float)
        print(df.head())  
          
        dx = df.copy()
        
        print(df.columns)
        x= df.copy()
        
        # print("Model expects", gia_model.n_features_in_, "features.")
        # print("X_features shape:", x.shape)
        
        print("===================================process_dataframe=2==================================")
        
        # ================================================================================================
        # Prediction report
        # ================================================================================================
        
        # Predict prices
        df['GIA_Predicted'] = gia_model.predict(x)
        df['Grade_Predicted'] = grade_model.predict(x)
        df['ByGrade_Predicted'] = bygrade_model.predict(x)
        df['Makable_Predicted'] = makable_model.predict(x)
                            
        
        # Compute differences
        df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
        df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
        df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
        df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
        
        print(df.head())
        
        predictions = df.to_dict(orient='records')
        analysis = df.describe().to_html()
        #print(analysis)
        #print(predictions)
        print("===================================process_dataframe=3==================================")
        
        # ================================================================================================
        # Classification report
        # ================================================================================================      
                      
        dx['col_change'] = col_model.predict(x)
        dx['cts_change'] = cts_model.predict(x)
        dx['cut_change'] = cut_model.predict(x)
        dx['qua_change'] = qua_model.predict(x)
        dx['shp_change'] = shp_model.predict(x)
        
        # Inverse transform the predictions
        dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
        dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
        dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
        dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
        dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])   
        
        print(dx.head())     
        
        print("===================================process_dataframe=4==================================")
        
        # Save output file with date and time
        time = str(pd.Timestamp.now().strftime("%Y-%m-%d"))
        
        #saving the output file
        global PRED_OUTPUT_FILE
        PRED_OUTPUT_FILE = f'data/prediction_output_{time}.csv'
        df.to_csv(PRED_OUTPUT_FILE, index=False)
        
        #saving the output file
        global CLASS_OUTPUT_FILE
        CLASS_OUTPUT_FILE = f'data/classification_output_{time}.csv'
        dx.to_csv(CLASS_OUTPUT_FILE, index=False)
        
        print("===================================Output file saved as output.csv===================================")
        
        return df.head(), dx.head()
    except Exception as e:
        print(f'Error processing file: {e}')
        flash(f'Error processing file: {e}', 'error')
        return pd.DataFrame(), pd.DataFrame()
    
def classification_report(df):
    try:
        classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
                                 "MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]] 
        
        # Make predictions
        classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)

        # Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
        classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
            lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
        )
        
        # Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
        classifcation_data['Change_shape_value'] = classifcation_data.apply(
            lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
        )
        
        # Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
        classifcation_data['Change_quality_value'] = classifcation_data.apply(
            lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
        )
        
        # Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
        classifcation_data['Change_color_value'] = classifcation_data.apply(
            lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
        )
        
        # Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
        classifcation_data['Change_cut_value'] = classifcation_data.apply(
            lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
        )
        
        # Generate classification report
        
        
        return classifcation_data
    except Exception as e:
        flash(f'Error generating classification report: {e}', 'error')
        print(f'Error generating classification report: {e}')
        return None
    
@app.route('/download_pred', methods=['GET'])
def download_pred():
    """Serve the output.csv file for download."""
    return send_file(PRED_OUTPUT_FILE, as_attachment=True)  

@app.route('/download_class', methods=['GET'])
def download_class():
    """Serve the output.csv file for download."""
    return send_file(CLASS_OUTPUT_FILE, as_attachment=True)   

if __name__ == "__main__":
    app.run(debug=True)