Spaces:
Running
Running
Upload 13 files
Browse files- Monitor_reports/regression_performance_at_training.html +0 -0
- Monitor_reports/regression_performance_at_training.json +1 -0
- Monitor_reports/regression_performance_at_training_adjusted.html +0 -0
- Monitor_reports/regression_performance_at_training_gia_adjusted.html +0 -0
- Monitor_reports/regression_performance_at_training_gia_ogp.html +0 -0
- Monitor_reports/regression_performance_at_training_og.html +0 -0
- app2.py +283 -0
- requirement.txt +97 -0
- templates/home.html +219 -0
- templates/index.html +70 -0
- templates/output.html +97 -0
- templates/results.html +185 -0
- utils/tools.py +130 -0
Monitor_reports/regression_performance_at_training.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Monitor_reports/regression_performance_at_training.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"version": "0.6.5", "metrics": [{"metric": "RegressionQualityMetric", "result": {"columns": {"utility_columns": {"date": null, "id": null, "target": "GrdAmt", "prediction": "adjusted_pred"}, "num_feature_names": ["EngAmt", "EngCts"], "cat_feature_names": ["Tag", "EngShp", "EngQua", "EngCol", "EngCut", "EngPol", "EngSym", "EngFlo", "EngNts", "EngMikly", "EngLab"], "text_feature_names": [], "datetime_feature_names": [], "target_names": null}, "current": {"r2_score": 0.9999923028920211, "rmse": 1.7576599997312332, "mean_error": 0.12982898322209938, "mean_abs_error": 1.4146422000467425, "mean_abs_perc_error": 0.36231777831306916, "abs_error_max": 3.0279654590704013, "underperformance": {"majority": {"mean_error": 0.12798954903896345, "std_error": 1.0911472758726741}, "underestimation": {"mean_error": -2.759110321710523, "std_error": NaN}, "overestimation": {"mean_error": 3.0279654590704013, "std_error": NaN}}, "error_std": 1.8933036280707416, "abs_error_std": 1.1267277727646234, "abs_perc_error_std": 0.003736499656151631}, "reference": null, "rmse_default": 633.5356812819848, "me_default_sigma": 1.8933036280707416, "mean_abs_error_default": 363.31442857142855, "mean_abs_perc_error_default": 47.842013429798385, "abs_error_max_default": 1763.2030000000002, "error_normality": {"order_statistic_medians_x": [-1.314872752547375, -0.7439764884519314, -0.3471943041728483, 0.0, 0.3471943041728483, 0.7439764884519314, 1.314872752547375], "order_statistic_medians_y": [-2.759110321710523, -1.347814805996677, -0.3899211311790509, 0.0004486202879263601, 1.0304255232912851, 1.3468095387913337, 3.0279654590704013], "slope": 2.103082399659136, "intercept": 0.12982898322209938, "r": 0.9941374379341389}, "error_bias": {"EngAmt": {"feature_type": "num", "current_majority": 601.6108571428571, "current_under": 1818.545, "current_over": 821.99, "current_range": 63.14647907315083}, "EngCts": {"feature_type": "num", "current_majority": 0.6328571428571428, "current_under": 1.01, "current_over": 0.96, "current_range": 7.042253521126767}, "Tag": {"feature_type": "cat", "current_majority": 0, "current_under": 0, "current_over": 0, "current_range": 0.0}, "EngShp": {"feature_type": "cat", "current_majority": 0, "current_under": 6, "current_over": 6, "current_range": 1.0}, "EngQua": {"feature_type": "cat", "current_majority": 7, "current_under": 7, "current_over": 2, "current_range": 1.0}, "EngCol": {"feature_type": "cat", "current_majority": 2, "current_under": 5, "current_over": 3, "current_range": 1.0}, "EngCut": {"feature_type": "cat", "current_majority": 5, "current_under": 2, "current_over": 5, "current_range": 1.0}, "EngPol": {"feature_type": "cat", "current_majority": 0, "current_under": 0, "current_over": 1, "current_range": 1.0}, "EngSym": {"feature_type": "cat", "current_majority": 1, "current_under": 0, "current_over": 1, "current_range": 1.0}, "EngFlo": {"feature_type": "cat", "current_majority": 2, "current_under": 2, "current_over": 2, "current_range": 0.0}, "EngNts": {"feature_type": "cat", "current_majority": 0, "current_under": 0, "current_over": 0, "current_range": 0.0}, "EngMikly": {"feature_type": "cat", "current_majority": 1, "current_under": 1, "current_over": 1, "current_range": 0.0}, "EngLab": {"feature_type": "cat", "current_majority": 1, "current_under": 1, "current_over": 1, "current_range": 0.0}}}}, {"metric": "RegressionPredictedVsActualScatter", "result": {}}, {"metric": "RegressionPredictedVsActualPlot", "result": {}}, {"metric": "RegressionErrorPlot", "result": {}}, {"metric": "RegressionAbsPercentageErrorPlot", "result": {}}, {"metric": "RegressionErrorDistribution", "result": {}}, {"metric": "RegressionErrorNormality", "result": {}}, {"metric": "RegressionTopErrorMetric", "result": {}}, {"metric": "RegressionErrorBiasTable", "result": {"top_error": -1.0, "target_name": "", "prediction_name": "", "num_feature_names": [], "cat_feature_names": [], "error_bias": null, "columns": null}}], "timestamp": "2025-03-07 15:33:42.729397"}
|
Monitor_reports/regression_performance_at_training_adjusted.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Monitor_reports/regression_performance_at_training_gia_adjusted.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Monitor_reports/regression_performance_at_training_gia_ogp.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Monitor_reports/regression_performance_at_training_og.html
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app2.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
from werkzeug.utils import secure_filename
|
5 |
+
from joblib import load
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
from sklearn.decomposition import PCA
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
from sklearn.tree import DecisionTreeRegressor
|
13 |
+
from sklearn.ensemble import RandomForestRegressor
|
14 |
+
from sklearn.linear_model import LinearRegression
|
15 |
+
from xgboost import XGBRegressor
|
16 |
+
from sklearn.neighbors import KNeighborsRegressor
|
17 |
+
from sklearn.model_selection import cross_val_score
|
18 |
+
from sklearn.metrics import mean_squared_error
|
19 |
+
from sklearn import metrics
|
20 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
21 |
+
from time import time
|
22 |
+
|
23 |
+
app = Flask(__name__)
|
24 |
+
|
25 |
+
# Set the secret key for session management
|
26 |
+
app.secret_key = os.urandom(24)
|
27 |
+
|
28 |
+
# Configurations
|
29 |
+
UPLOAD_FOLDER = "uploads/"
|
30 |
+
DATA_FOLDER = "data/"
|
31 |
+
|
32 |
+
# Define the model directory (ensuring correct path formatting)
|
33 |
+
MODEL_DIR = r'.\Model'
|
34 |
+
LABEL_ENOCDER_DIR = r'.\Label_encoders'
|
35 |
+
|
36 |
+
# Define the output file path
|
37 |
+
PRED_OUTPUT_FILE = "data/pred_output.csv"
|
38 |
+
CLASS_OUTPUT_FILE = "data/class_output.csv"
|
39 |
+
|
40 |
+
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
|
41 |
+
|
42 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
43 |
+
|
44 |
+
# Ensure the upload folder exists
|
45 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
46 |
+
|
47 |
+
# Load models using os.path.join for better cross-platform compatibility
|
48 |
+
|
49 |
+
# linear_regression_model
|
50 |
+
gia_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_gia_price.joblib'))
|
51 |
+
grade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_grade_price.joblib'))
|
52 |
+
bygrade_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_bygrade_price.joblib'))
|
53 |
+
makable_model = load(os.path.join(MODEL_DIR, 'linear_regression_model_makable_price.joblib'))
|
54 |
+
|
55 |
+
# classifier_model
|
56 |
+
col_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_col.joblib'))
|
57 |
+
cts_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cts.joblib'))
|
58 |
+
cut_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_cut.joblib'))
|
59 |
+
qua_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_qua.joblib'))
|
60 |
+
shp_model = load(os.path.join(MODEL_DIR, 'classification_LogisticRegression_shp.joblib'))
|
61 |
+
|
62 |
+
# print("===================================models==================================")
|
63 |
+
# print(gia_model)
|
64 |
+
# print(grade_model)
|
65 |
+
# print(bygrade_model)
|
66 |
+
# print(makable_model)
|
67 |
+
|
68 |
+
# Load label encoders
|
69 |
+
encoder_list = ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngLab',
|
70 |
+
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value', 'Change_cut_value']
|
71 |
+
#loaded_label_encoder = {val: load(f"./Label_encoders/label_encoder_{val}.joblib") for val in encoder_list}
|
72 |
+
loaded_label_encoder = {}
|
73 |
+
for val in encoder_list:
|
74 |
+
#encoder_path = f"H:/DEV PATEL/2025/AI_In_Diamond_Industry/Label_encoders/label_encoder_{val}.joblib"
|
75 |
+
encoder_path = os.path.join(LABEL_ENOCDER_DIR, f"label_encoder_{val}.joblib")
|
76 |
+
loaded_label_encoder[val] = load(encoder_path)
|
77 |
+
|
78 |
+
# print(loaded_label_encoder)
|
79 |
+
|
80 |
+
# Ensure upload folder exists
|
81 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
82 |
+
|
83 |
+
def allowed_file(filename):
|
84 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
85 |
+
|
86 |
+
@app.route('/')
|
87 |
+
def index():
|
88 |
+
return render_template('index.html')
|
89 |
+
|
90 |
+
@app.route('/predict', methods=['POST'])
|
91 |
+
def predict():
|
92 |
+
if 'file' not in request.files:
|
93 |
+
flash('No file part', 'error')
|
94 |
+
return redirect(request.url)
|
95 |
+
|
96 |
+
file = request.files['file']
|
97 |
+
if file.filename == '':
|
98 |
+
flash('No selected file', 'error')
|
99 |
+
return redirect(request.url)
|
100 |
+
|
101 |
+
if file and allowed_file(file.filename):
|
102 |
+
filename = secure_filename(file.filename)
|
103 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
104 |
+
file.save(filepath)
|
105 |
+
|
106 |
+
# Convert to DataFrame
|
107 |
+
if filename.endswith('.csv'):
|
108 |
+
df = pd.read_csv(filepath)
|
109 |
+
else:
|
110 |
+
df = pd.read_excel(filepath)
|
111 |
+
|
112 |
+
# Preprocess DataFrame
|
113 |
+
print("===================================process_dataframe=0==================================")
|
114 |
+
df,dx = process_dataframe(df)
|
115 |
+
print("===================================process_dataframe=5==================================")
|
116 |
+
return render_template('output.html', df=df.to_html(), dx=dx.to_html())
|
117 |
+
else:
|
118 |
+
flash('Invalid file type. Only CSV and Excel files are allowed.', 'error')
|
119 |
+
print('Invalid file type. Only CSV and Excel files are allowed.')
|
120 |
+
return redirect(request.url)
|
121 |
+
|
122 |
+
def process_dataframe(df):
|
123 |
+
try:
|
124 |
+
print("===================================process_dataframe=1==================================")
|
125 |
+
# 'EngLab' is not in the required columns
|
126 |
+
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
127 |
+
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
128 |
+
|
129 |
+
# for prediction
|
130 |
+
df = df[required_columns]
|
131 |
+
df = df.copy()
|
132 |
+
# for classification
|
133 |
+
|
134 |
+
|
135 |
+
# df[col] = df[col].map(lambda x: loaded_label_encoder[col].transform([x])[0] if x in loaded_label_encoder[col].classes_ else np.nan)
|
136 |
+
|
137 |
+
# Transform categorical features using loaded label encoders
|
138 |
+
df["Tag"] = loaded_label_encoder['Tag'].transform(df["Tag"])
|
139 |
+
df["EngShp"] = loaded_label_encoder['EngShp'].transform(df["EngShp"])
|
140 |
+
df["EngQua"] = loaded_label_encoder['EngQua'].transform(df["EngQua"])
|
141 |
+
df["EngCol"] = loaded_label_encoder['EngCol'].transform(df["EngCol"])
|
142 |
+
df["EngCut"] = loaded_label_encoder['EngCut'].transform(df["EngCut"])
|
143 |
+
df["EngPol"] = loaded_label_encoder['EngPol'].transform(df["EngPol"])
|
144 |
+
df["EngSym"] = loaded_label_encoder['EngSym'].transform(df["EngSym"])
|
145 |
+
df["EngFlo"] = loaded_label_encoder['EngFlo'].transform(df["EngFlo"])
|
146 |
+
df["EngNts"] = loaded_label_encoder['EngNts'].transform(df["EngNts"])
|
147 |
+
df["EngMikly"] = loaded_label_encoder['EngMikly'].transform(df["EngMikly"])
|
148 |
+
#EngLab = loaded_label_encoder['EngLab'].transform(df[EngLab])
|
149 |
+
|
150 |
+
df=df.astype(float)
|
151 |
+
print(df.head())
|
152 |
+
|
153 |
+
dx = df.copy()
|
154 |
+
|
155 |
+
print(df.columns)
|
156 |
+
x= df.copy()
|
157 |
+
|
158 |
+
# print("Model expects", gia_model.n_features_in_, "features.")
|
159 |
+
# print("X_features shape:", x.shape)
|
160 |
+
|
161 |
+
print("===================================process_dataframe=2==================================")
|
162 |
+
|
163 |
+
# ================================================================================================
|
164 |
+
# Prediction report
|
165 |
+
# ================================================================================================
|
166 |
+
|
167 |
+
# Predict prices
|
168 |
+
df['GIA_Predicted'] = gia_model.predict(x)
|
169 |
+
df['Grade_Predicted'] = grade_model.predict(x)
|
170 |
+
df['ByGrade_Predicted'] = bygrade_model.predict(x)
|
171 |
+
df['Makable_Predicted'] = makable_model.predict(x)
|
172 |
+
|
173 |
+
|
174 |
+
# Compute differences
|
175 |
+
df['GIA_Diff'] = df['EngAmt'] - df['GIA_Predicted']
|
176 |
+
df['Grade_Diff'] = df['EngAmt'] - df['Grade_Predicted']
|
177 |
+
df['ByGrade_Diff'] = df['EngAmt'] - df['ByGrade_Predicted']
|
178 |
+
df['Makable_Diff'] = df['EngAmt'] - df['Makable_Predicted']
|
179 |
+
|
180 |
+
print(df.head())
|
181 |
+
|
182 |
+
predictions = df.to_dict(orient='records')
|
183 |
+
analysis = df.describe().to_html()
|
184 |
+
#print(analysis)
|
185 |
+
#print(predictions)
|
186 |
+
print("===================================process_dataframe=3==================================")
|
187 |
+
|
188 |
+
# ================================================================================================
|
189 |
+
# Classification report
|
190 |
+
# ================================================================================================
|
191 |
+
|
192 |
+
dx['col_change'] = col_model.predict(x)
|
193 |
+
dx['cts_change'] = cts_model.predict(x)
|
194 |
+
dx['cut_change'] = cut_model.predict(x)
|
195 |
+
dx['qua_change'] = qua_model.predict(x)
|
196 |
+
dx['shp_change'] = shp_model.predict(x)
|
197 |
+
|
198 |
+
# Inverse transform the predictions
|
199 |
+
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
200 |
+
dx['cts_change'] = loaded_label_encoder['Change_cts_value'].inverse_transform(dx['cts_change'])
|
201 |
+
dx['cut_change'] = loaded_label_encoder['Change_cut_value'].inverse_transform(dx['cut_change'])
|
202 |
+
dx['qua_change'] = loaded_label_encoder['Change_quality_value'].inverse_transform(dx['qua_change'])
|
203 |
+
dx['shp_change'] = loaded_label_encoder['Change_shape_value'].inverse_transform(dx['shp_change'])
|
204 |
+
|
205 |
+
print(dx.head())
|
206 |
+
|
207 |
+
print("===================================process_dataframe=4==================================")
|
208 |
+
|
209 |
+
# Save output file with date and time
|
210 |
+
time = str(pd.Timestamp.now().strftime("%Y-%m-%d"))
|
211 |
+
|
212 |
+
#saving the output file
|
213 |
+
global PRED_OUTPUT_FILE
|
214 |
+
PRED_OUTPUT_FILE = f'data/prediction_output_{time}.csv'
|
215 |
+
df.to_csv(PRED_OUTPUT_FILE, index=False)
|
216 |
+
|
217 |
+
#saving the output file
|
218 |
+
global CLASS_OUTPUT_FILE
|
219 |
+
CLASS_OUTPUT_FILE = f'data/classification_output_{time}.csv'
|
220 |
+
dx.to_csv(CLASS_OUTPUT_FILE, index=False)
|
221 |
+
|
222 |
+
print("===================================Output file saved as output.csv===================================")
|
223 |
+
|
224 |
+
return df.head(), dx.head()
|
225 |
+
except Exception as e:
|
226 |
+
print(f'Error processing file: {e}')
|
227 |
+
flash(f'Error processing file: {e}', 'error')
|
228 |
+
return pd.DataFrame(), pd.DataFrame()
|
229 |
+
|
230 |
+
def classification_report(df):
|
231 |
+
try:
|
232 |
+
classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
|
233 |
+
"MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
|
234 |
+
|
235 |
+
# Make predictions
|
236 |
+
classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
|
237 |
+
|
238 |
+
# Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
|
239 |
+
classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
|
240 |
+
lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
|
241 |
+
)
|
242 |
+
|
243 |
+
# Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
|
244 |
+
classifcation_data['Change_shape_value'] = classifcation_data.apply(
|
245 |
+
lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
|
246 |
+
)
|
247 |
+
|
248 |
+
# Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
|
249 |
+
classifcation_data['Change_quality_value'] = classifcation_data.apply(
|
250 |
+
lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
|
251 |
+
)
|
252 |
+
|
253 |
+
# Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
|
254 |
+
classifcation_data['Change_color_value'] = classifcation_data.apply(
|
255 |
+
lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
|
256 |
+
)
|
257 |
+
|
258 |
+
# Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
|
259 |
+
classifcation_data['Change_cut_value'] = classifcation_data.apply(
|
260 |
+
lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
|
261 |
+
)
|
262 |
+
|
263 |
+
# Generate classification report
|
264 |
+
|
265 |
+
|
266 |
+
return classifcation_data
|
267 |
+
except Exception as e:
|
268 |
+
flash(f'Error generating classification report: {e}', 'error')
|
269 |
+
print(f'Error generating classification report: {e}')
|
270 |
+
return None
|
271 |
+
|
272 |
+
@app.route('/download_pred', methods=['GET'])
|
273 |
+
def download_pred():
|
274 |
+
"""Serve the output.csv file for download."""
|
275 |
+
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
|
276 |
+
|
277 |
+
@app.route('/download_class', methods=['GET'])
|
278 |
+
def download_class():
|
279 |
+
"""Serve the output.csv file for download."""
|
280 |
+
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
app.run(debug=True)
|
requirement.txt
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py
|
2 |
+
asttokens
|
3 |
+
astunparse
|
4 |
+
blinker
|
5 |
+
certifi
|
6 |
+
charset-normalizer
|
7 |
+
click
|
8 |
+
colorama
|
9 |
+
comm
|
10 |
+
contourpy
|
11 |
+
cycler
|
12 |
+
debugpy
|
13 |
+
decorator
|
14 |
+
et_xmlfile
|
15 |
+
executing
|
16 |
+
filelock
|
17 |
+
Flask
|
18 |
+
flatbuffers
|
19 |
+
fonttools
|
20 |
+
fsspec
|
21 |
+
gast
|
22 |
+
google-pasta
|
23 |
+
grpcio
|
24 |
+
h5py
|
25 |
+
idna
|
26 |
+
ipykernel
|
27 |
+
ipython
|
28 |
+
itsdangerous
|
29 |
+
jedi
|
30 |
+
Jinja2
|
31 |
+
joblib
|
32 |
+
jupyter_client
|
33 |
+
jupyter_core
|
34 |
+
keras
|
35 |
+
kiwisolver
|
36 |
+
libclang
|
37 |
+
Markdown
|
38 |
+
markdown-it-py
|
39 |
+
MarkupSafe
|
40 |
+
matplotlib
|
41 |
+
matplotlib-inline
|
42 |
+
mdurl
|
43 |
+
ml-dtypes
|
44 |
+
mpmath
|
45 |
+
namex
|
46 |
+
nest-asyncio
|
47 |
+
networkx
|
48 |
+
numpy
|
49 |
+
openpyxl
|
50 |
+
opt_einsum
|
51 |
+
optree
|
52 |
+
packaging
|
53 |
+
pandas
|
54 |
+
parso
|
55 |
+
patsy
|
56 |
+
pillow
|
57 |
+
platformdirs
|
58 |
+
prompt_toolkit
|
59 |
+
protobuf
|
60 |
+
psutil
|
61 |
+
pure_eval
|
62 |
+
Pygments
|
63 |
+
pyparsing
|
64 |
+
python-dateutil
|
65 |
+
python-dotenv
|
66 |
+
pytz
|
67 |
+
pywin32
|
68 |
+
pyzmq
|
69 |
+
requests
|
70 |
+
rich
|
71 |
+
scikit-learn
|
72 |
+
scipy
|
73 |
+
seaborn
|
74 |
+
setuptools
|
75 |
+
six
|
76 |
+
stack-data
|
77 |
+
statsmodels
|
78 |
+
sympy
|
79 |
+
tensorboard
|
80 |
+
tensorboard-data-server
|
81 |
+
tensorflow
|
82 |
+
tensorflow_intel
|
83 |
+
termcolor
|
84 |
+
threadpoolctl
|
85 |
+
torch
|
86 |
+
torchaudio
|
87 |
+
torchvision
|
88 |
+
tornado
|
89 |
+
traitlets
|
90 |
+
typing_extensions
|
91 |
+
tzdata
|
92 |
+
urllib3
|
93 |
+
wcwidth
|
94 |
+
Werkzeug
|
95 |
+
wheel
|
96 |
+
wrapt
|
97 |
+
xgboost
|
templates/home.html
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Diamond Price Prediction</title>
|
6 |
+
<style>
|
7 |
+
body {
|
8 |
+
background-color: #041C32;
|
9 |
+
color: #ECB365;
|
10 |
+
font-family: Arial, sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 20px;
|
13 |
+
}
|
14 |
+
.container {
|
15 |
+
max-width: 800px;
|
16 |
+
margin: auto;
|
17 |
+
background-color: #04293A;
|
18 |
+
padding: 20px;
|
19 |
+
border-radius: 8px;
|
20 |
+
}
|
21 |
+
h1 {
|
22 |
+
color: #ECB365;
|
23 |
+
}
|
24 |
+
label {
|
25 |
+
display: block;
|
26 |
+
margin-top: 10px;
|
27 |
+
color: #ECB365;
|
28 |
+
}
|
29 |
+
input[type="text"],
|
30 |
+
input[type="number"],
|
31 |
+
select {
|
32 |
+
width: 100%;
|
33 |
+
padding: 8px;
|
34 |
+
margin-top: 5px;
|
35 |
+
border: 1px solid #064663;
|
36 |
+
border-radius: 4px;
|
37 |
+
background-color: #064663;
|
38 |
+
color: #ECB365;
|
39 |
+
box-sizing: border-box;
|
40 |
+
}
|
41 |
+
.btn {
|
42 |
+
margin-top: 20px;
|
43 |
+
padding: 10px 15px;
|
44 |
+
background-color: #ECB365;
|
45 |
+
color: #041C32;
|
46 |
+
border: none;
|
47 |
+
border-radius: 4px;
|
48 |
+
cursor: pointer;
|
49 |
+
font-weight: bold;
|
50 |
+
}
|
51 |
+
.flash {
|
52 |
+
padding: 10px;
|
53 |
+
margin-bottom: 15px;
|
54 |
+
border: 1px solid #ECB365;
|
55 |
+
background-color: #064663;
|
56 |
+
}
|
57 |
+
</style>
|
58 |
+
</head>
|
59 |
+
<body>
|
60 |
+
<div class="container">
|
61 |
+
<h1>Diamond Price Prediction</h1>
|
62 |
+
<p><strong>Note:</strong>there may be values missing in option due to less data.</p>
|
63 |
+
{% with messages = get_flashed_messages(with_categories=true) %}
|
64 |
+
{% if messages %}
|
65 |
+
{% for category, message in messages %}
|
66 |
+
<div class="flash">{{ message }}</div>
|
67 |
+
{% endfor %}
|
68 |
+
{% endif %}
|
69 |
+
{% endwith %}
|
70 |
+
<form action="{{ url_for('predict') }}" method="post">
|
71 |
+
|
72 |
+
<!-- Fixed dropdown fields -->
|
73 |
+
<label for="Tag">Tag (Category)</label>
|
74 |
+
<select id="Tag" name="Tag">
|
75 |
+
<option value="">Select Tag</option>
|
76 |
+
<option value="A">A</option>
|
77 |
+
<option value="B">B</option>
|
78 |
+
<option value="C">C</option>
|
79 |
+
<option value="D">D</option>
|
80 |
+
<option value="E">E</option>
|
81 |
+
<option value="F">F</option>
|
82 |
+
<option value="G">G</option>
|
83 |
+
<option value="H">H</option>
|
84 |
+
<option value="I">I</option>
|
85 |
+
</select>
|
86 |
+
|
87 |
+
<label for="EngShp">EngShp</label>
|
88 |
+
<select id="EngShp" name="EngShp">
|
89 |
+
<option value="">Select EngShp</option>
|
90 |
+
<option value="OV">OV</option>
|
91 |
+
<option value="MQ">MQ</option>
|
92 |
+
<option value="PE">PE</option>
|
93 |
+
<option value="R">R</option>
|
94 |
+
<option value="EM">EM</option>
|
95 |
+
<option value="HR">HR</option>
|
96 |
+
<option value="RD">RD</option>
|
97 |
+
<option value="PR">PR</option>
|
98 |
+
</select>
|
99 |
+
|
100 |
+
<label for="EngQua">EngQua</label>
|
101 |
+
<select id="EngQua" name="EngQua">
|
102 |
+
<option value="">Select EngQua</option>
|
103 |
+
<option value="SI2">SI2</option>
|
104 |
+
<option value="SI1">SI1</option>
|
105 |
+
<option value="VS2">VS2</option>
|
106 |
+
<option value="VVS2">VVS2</option>
|
107 |
+
<option value="VS1">VS1</option>
|
108 |
+
<option value="I2">I2</option>
|
109 |
+
<option value="I1">I1</option>
|
110 |
+
<option value="I2-">I2-</option>
|
111 |
+
<option value="I3">I3</option>
|
112 |
+
<option value="SI3">SI3</option>
|
113 |
+
<option value="I1-">I1-</option>
|
114 |
+
<option value="I4">I4</option>
|
115 |
+
<option value="I5">I5</option>
|
116 |
+
<option value="VVS1">VVS1</option>
|
117 |
+
</select>
|
118 |
+
|
119 |
+
<label for="EngCol">EngCol</label>
|
120 |
+
<select id="EngCol" name="EngCol">
|
121 |
+
<option value="">Select EngCol</option>
|
122 |
+
<option value="G">G</option>
|
123 |
+
<option value="F">F</option>
|
124 |
+
<option value="H">H</option>
|
125 |
+
<option value="E">E</option>
|
126 |
+
<option value="I">I</option>
|
127 |
+
<option value="J">J</option>
|
128 |
+
<option value="D">D</option>
|
129 |
+
<option value="L">L</option>
|
130 |
+
<option value="K">K</option>
|
131 |
+
<option value="M">M</option>
|
132 |
+
</select>
|
133 |
+
|
134 |
+
<label for="EngCut">EngCut</label>
|
135 |
+
<select id="EngCut" name="EngCut">
|
136 |
+
<option value="">Select EngCut</option>
|
137 |
+
<option value="EX3">EX3</option>
|
138 |
+
<option value="VG1">VG1</option>
|
139 |
+
<option value="EX1">EX1</option>
|
140 |
+
<option value="EX4">EX4</option>
|
141 |
+
<option value="EX2">EX2</option>
|
142 |
+
<option value="GD1">GD1</option>
|
143 |
+
</select>
|
144 |
+
|
145 |
+
<label for="EngPol">EngPol</label>
|
146 |
+
<select id="EngPol" name="EngPol">
|
147 |
+
<option value="">Select EngPol</option>
|
148 |
+
<option value="EX">EX</option>
|
149 |
+
<option value="VG">VG</option>
|
150 |
+
</select>
|
151 |
+
|
152 |
+
<label for="EngSym">EngSym</label>
|
153 |
+
<select id="EngSym" name="EngSym">
|
154 |
+
<option value="">Select EngSym</option>
|
155 |
+
<option value="EX">EX</option>
|
156 |
+
<option value="VG">VG</option>
|
157 |
+
</select>
|
158 |
+
|
159 |
+
<label for="EngFlo">EngFlo</label>
|
160 |
+
<select id="EngFlo" name="EngFlo">
|
161 |
+
<option value="">Select EngFlo</option>
|
162 |
+
<option value="Non">Non</option>
|
163 |
+
<option value="Fnt">Fnt</option>
|
164 |
+
<option value="Med">Med</option>
|
165 |
+
<option value="Str">Str</option>
|
166 |
+
<option value="VStr">VStr</option>
|
167 |
+
</select>
|
168 |
+
|
169 |
+
<label for="EngNts">EngNts</label>
|
170 |
+
<select id="EngNts" name="EngNts">
|
171 |
+
<option value="">Select EngNts</option>
|
172 |
+
<option value="N">N</option>
|
173 |
+
<option value="NTS2">NTS2</option>
|
174 |
+
<option value="NTS1">NTS1</option>
|
175 |
+
<option value="RSP-1">RSP-1</option>
|
176 |
+
</select>
|
177 |
+
|
178 |
+
<label for="EngMikly">EngMikly</label>
|
179 |
+
<select id="EngMikly" name="EngMikly">
|
180 |
+
<option value="">Select EngMikly</option>
|
181 |
+
<option value="N">N</option>
|
182 |
+
<option value="ML1">ML1</option>
|
183 |
+
<option value="Nv">Nv</option>
|
184 |
+
</select>
|
185 |
+
|
186 |
+
<label for="EngLab">EngLab</label>
|
187 |
+
<select id="EngLab" name="EngLab">
|
188 |
+
<option value="">Select EngLab</option>
|
189 |
+
<option value="nan">None</option>
|
190 |
+
<option value="IGI">IGI</option>
|
191 |
+
</select>
|
192 |
+
|
193 |
+
<!-- Other input fields remain for user to fill manually -->
|
194 |
+
<!-- <label for="ICarat">ICarat</label>
|
195 |
+
<input type="number" step="any" id="ICarat" name="ICarat" placeholder="Enter ICarat">
|
196 |
+
|
197 |
+
<label for="MkblCarat">MkblCarat</label>
|
198 |
+
<input type="number" step="any" id="MkblCarat" name="MkblCarat" placeholder="Enter MkblCarat">
|
199 |
+
|
200 |
+
<label for="SawLossCarat">SawLossCarat</label>
|
201 |
+
<input type="number" step="any" id="SawLossCarat" name="SawLossCarat" placeholder="Enter SawLossCarat">
|
202 |
+
|
203 |
+
<label for="CrapsCarat">CrapsCarat</label>
|
204 |
+
<input type="number" step="any" id="CrapsCarat" name="CrapsCarat" placeholder="Enter CrapsCarat">
|
205 |
+
|
206 |
+
<label for="EngGraphCts">EngGraphCts</label>
|
207 |
+
<input type="number" step="any" id="EngGraphCts" name="EngGraphCts" placeholder="Enter EngGraphCts"> -->
|
208 |
+
|
209 |
+
<label for="EngCts">EngCts</label>
|
210 |
+
<input type="number" step="any" id="EngCts" name="EngCts" placeholder="Enter EngCts">
|
211 |
+
|
212 |
+
<label for="EngAmt">EngAmt</label>
|
213 |
+
<input type="number" step="any" id="EngAmt" name="EngAmt" placeholder="Enter EngAmt">
|
214 |
+
|
215 |
+
<button type="submit" class="btn">Predict Price</button>
|
216 |
+
</form>
|
217 |
+
</div>
|
218 |
+
</body>
|
219 |
+
</html>
|
templates/index.html
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Diamond Price Prediction</title>
|
6 |
+
<style>
|
7 |
+
body {
|
8 |
+
background-color: #041C32;
|
9 |
+
color: #ECB365;
|
10 |
+
font-family: Arial, sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 20px;
|
13 |
+
}
|
14 |
+
.container {
|
15 |
+
max-width: 800px;
|
16 |
+
margin: auto;
|
17 |
+
background-color: #04293A;
|
18 |
+
padding: 20px;
|
19 |
+
border-radius: 8px;
|
20 |
+
}
|
21 |
+
h1 {
|
22 |
+
color: #ECB365;
|
23 |
+
text-align: center;
|
24 |
+
}
|
25 |
+
label {
|
26 |
+
display: block;
|
27 |
+
margin-top: 10px;
|
28 |
+
color: #ECB365;
|
29 |
+
}
|
30 |
+
input, select {
|
31 |
+
width: 100%;
|
32 |
+
padding: 8px;
|
33 |
+
margin-top: 5px;
|
34 |
+
border: 1px solid #064663;
|
35 |
+
border-radius: 4px;
|
36 |
+
background-color: #064663;
|
37 |
+
color: #ECB365;
|
38 |
+
box-sizing: border-box;
|
39 |
+
}
|
40 |
+
.btn {
|
41 |
+
margin-top: 20px;
|
42 |
+
padding: 10px 15px;
|
43 |
+
background-color: #ECB365;
|
44 |
+
color: #041C32;
|
45 |
+
border: none;
|
46 |
+
border-radius: 4px;
|
47 |
+
cursor: pointer;
|
48 |
+
font-weight: bold;
|
49 |
+
}
|
50 |
+
.upload-section {
|
51 |
+
margin-top: 20px;
|
52 |
+
padding: 15px;
|
53 |
+
border: 2px dashed #ECB365;
|
54 |
+
text-align: center;
|
55 |
+
}
|
56 |
+
</style>
|
57 |
+
</head>
|
58 |
+
<body>
|
59 |
+
<div class="container">
|
60 |
+
<h1>Diamond Price Prediction</h1>
|
61 |
+
<div class="upload-section">
|
62 |
+
<h3>Upload CSV or Excel for Bulk Prediction</h3>
|
63 |
+
<form action="{{ url_for('predict') }}" method="post" enctype="multipart/form-data">
|
64 |
+
<input type="file" name="file" accept=".csv, .xlsx" required>
|
65 |
+
<button type="submit" class="btn">Upload & Predict</button>
|
66 |
+
</form>
|
67 |
+
</div>
|
68 |
+
</div>
|
69 |
+
</body>
|
70 |
+
</html>
|
templates/output.html
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Prediction Result</title>
|
6 |
+
<style>
|
7 |
+
body {
|
8 |
+
background-color: #041C32;
|
9 |
+
color: #ECB365;
|
10 |
+
font-family: Arial, sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 20px;
|
13 |
+
}
|
14 |
+
.container {
|
15 |
+
max-width: 900px;
|
16 |
+
margin: auto;
|
17 |
+
background-color: #04293A;
|
18 |
+
padding: 20px;
|
19 |
+
border-radius: 8px;
|
20 |
+
text-align: center;
|
21 |
+
}
|
22 |
+
h1 {
|
23 |
+
color: #ECB365;
|
24 |
+
}
|
25 |
+
.result-box {
|
26 |
+
padding: 20px;
|
27 |
+
margin-top: 15px;
|
28 |
+
border: 2px solid #ECB365;
|
29 |
+
background-color: #064663;
|
30 |
+
font-size: 1em;
|
31 |
+
font-weight: normal;
|
32 |
+
border-radius: 5px;
|
33 |
+
}
|
34 |
+
.btn {
|
35 |
+
margin-top: 20px;
|
36 |
+
padding: 10px 15px;
|
37 |
+
background-color: #ECB365;
|
38 |
+
color: #041C32;
|
39 |
+
border: none;
|
40 |
+
border-radius: 4px;
|
41 |
+
cursor: pointer;
|
42 |
+
font-weight: bold;
|
43 |
+
display: inline-block;
|
44 |
+
text-decoration: none;
|
45 |
+
}
|
46 |
+
/* Styles for the table container */
|
47 |
+
.table-wrapper {
|
48 |
+
overflow-x: auto;
|
49 |
+
margin: auto;
|
50 |
+
max-width: 100%;
|
51 |
+
padding: 10px;
|
52 |
+
background-color: #04293A;
|
53 |
+
border-radius: 4px;
|
54 |
+
}
|
55 |
+
table {
|
56 |
+
width: 100%;
|
57 |
+
border-collapse: collapse;
|
58 |
+
color: #ECB365;
|
59 |
+
}
|
60 |
+
th, td {
|
61 |
+
border: 1px solid #ECB365;
|
62 |
+
padding: 8px;
|
63 |
+
text-align: center;
|
64 |
+
}
|
65 |
+
th {
|
66 |
+
background-color: #064663;
|
67 |
+
font-weight: bold;
|
68 |
+
}
|
69 |
+
</style>
|
70 |
+
</head>
|
71 |
+
<body>
|
72 |
+
<!--Prediction Report-->
|
73 |
+
<div class="container">
|
74 |
+
<h1>Predicted Diamond Price</h1>
|
75 |
+
<div class="result-box">
|
76 |
+
<p>The Prediction on diamond:</p>
|
77 |
+
<div class="table-wrapper">
|
78 |
+
{{ df|safe }}
|
79 |
+
</div>
|
80 |
+
</div>
|
81 |
+
<a href="{{ url_for('download_pred') }}" class="btn">Download CSV</a>
|
82 |
+
<a href="/" class="btn">Go Back</a>
|
83 |
+
</div>
|
84 |
+
<!--Analysis Report-->
|
85 |
+
<div class="container">
|
86 |
+
<h1>Analysis Diamond Parameter changes</h1>
|
87 |
+
<div class="result-box">
|
88 |
+
<p>The analysis on diamond:</p>
|
89 |
+
<div class="table-wrapper">
|
90 |
+
{{ dx|safe }}
|
91 |
+
</div>
|
92 |
+
</div>
|
93 |
+
<a href="{{ url_for('download_class') }}" class="btn">Download CSV</a>
|
94 |
+
<a href="/" class="btn">Go Back</a>
|
95 |
+
</div>
|
96 |
+
</body>
|
97 |
+
</html>
|
templates/results.html
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<title>Prediction Results</title>
|
6 |
+
<style>
|
7 |
+
body {
|
8 |
+
background-color: #041C32;
|
9 |
+
color: #ECB365;
|
10 |
+
font-family: Arial, sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 20px;
|
13 |
+
}
|
14 |
+
.container {
|
15 |
+
max-width: 600px;
|
16 |
+
margin: auto;
|
17 |
+
background-color: #04293A;
|
18 |
+
padding: 20px;
|
19 |
+
border-radius: 8px;
|
20 |
+
}
|
21 |
+
h1 {
|
22 |
+
color: #ECB365;
|
23 |
+
text-align: center;
|
24 |
+
}
|
25 |
+
table {
|
26 |
+
width: 100%;
|
27 |
+
border-collapse: collapse;
|
28 |
+
margin-top: 20px;
|
29 |
+
}
|
30 |
+
th, td {
|
31 |
+
border: 1px solid #064663;
|
32 |
+
padding: 10px;
|
33 |
+
text-align: center;
|
34 |
+
}
|
35 |
+
th {
|
36 |
+
background-color: #064663;
|
37 |
+
}
|
38 |
+
.positive {
|
39 |
+
color: green;
|
40 |
+
font-weight: bold;
|
41 |
+
}
|
42 |
+
.negative {
|
43 |
+
color: red;
|
44 |
+
font-weight: bold;
|
45 |
+
}
|
46 |
+
.btn {
|
47 |
+
display: block;
|
48 |
+
margin: 20px auto 0;
|
49 |
+
padding: 10px 15px;
|
50 |
+
background-color: #ECB365;
|
51 |
+
color: #041C32;
|
52 |
+
border: none;
|
53 |
+
border-radius: 4px;
|
54 |
+
text-decoration: none;
|
55 |
+
font-weight: bold;
|
56 |
+
width: fit-content;
|
57 |
+
}
|
58 |
+
/* Tooltip container */
|
59 |
+
.tooltip {
|
60 |
+
position: relative;
|
61 |
+
display: inline-block;
|
62 |
+
cursor: pointer;
|
63 |
+
}
|
64 |
+
/* Tooltip text (info card) */
|
65 |
+
.tooltip .tooltip-content {
|
66 |
+
visibility: hidden;
|
67 |
+
width: 200px;
|
68 |
+
background-color: #ECB365;
|
69 |
+
color: #041C32;
|
70 |
+
text-align: center;
|
71 |
+
border-radius: 6px;
|
72 |
+
padding: 10px;
|
73 |
+
position: absolute;
|
74 |
+
z-index: 1;
|
75 |
+
bottom: 125%; /* Position above the text */
|
76 |
+
left: 50%;
|
77 |
+
transform: translateX(-50%);
|
78 |
+
opacity: 0;
|
79 |
+
transition: opacity 0.3s;
|
80 |
+
}
|
81 |
+
/* Tooltip arrow */
|
82 |
+
.tooltip .tooltip-content::after {
|
83 |
+
content: "";
|
84 |
+
position: absolute;
|
85 |
+
top: 100%; /* At the bottom of the tooltip */
|
86 |
+
left: 50%;
|
87 |
+
transform: translateX(-50%);
|
88 |
+
border-width: 5px;
|
89 |
+
border-style: solid;
|
90 |
+
border-color: #ECB365 transparent transparent transparent;
|
91 |
+
}
|
92 |
+
/* Show tooltip on hover */
|
93 |
+
.tooltip:hover .tooltip-content {
|
94 |
+
visibility: visible;
|
95 |
+
opacity: 1;
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
</head>
|
99 |
+
<body>
|
100 |
+
<div class="container">
|
101 |
+
<h1>Prediction Results</h1>
|
102 |
+
<p>Note: This is a demo model results, so results may vary and be weak on predictions.</p>
|
103 |
+
<table>
|
104 |
+
<tr>
|
105 |
+
<th>Model</th>
|
106 |
+
<th>Predicted Price</th>
|
107 |
+
<th>Difference (Price - EngAmt)</th>
|
108 |
+
</tr>
|
109 |
+
<tr>
|
110 |
+
<td>
|
111 |
+
<div class="tooltip">
|
112 |
+
GIA
|
113 |
+
<div class="tooltip-content">
|
114 |
+
<strong>Note:</strong> this GIA model is trainned over 372 records.
|
115 |
+
</div>
|
116 |
+
</div>
|
117 |
+
</td>
|
118 |
+
<td>{{ gia_price }}</td>
|
119 |
+
<td>
|
120 |
+
{% if gia_diff >= 0 %}
|
121 |
+
<span class="positive">{{ gia_diff }}</span>
|
122 |
+
{% else %}
|
123 |
+
<span class="negative">{{ gia_diff }}</span>
|
124 |
+
{% endif %}
|
125 |
+
</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>
|
129 |
+
<div class="tooltip">
|
130 |
+
Grade
|
131 |
+
<div class="tooltip-content">
|
132 |
+
<strong>Note:</strong> this Grade model is trainned over 641 records.
|
133 |
+
</div>
|
134 |
+
</div>
|
135 |
+
</td>
|
136 |
+
<td>{{ grade_price }}</td>
|
137 |
+
<td>
|
138 |
+
{% if grade_diff >= 0 %}
|
139 |
+
<span class="positive">{{ grade_diff }}</span>
|
140 |
+
{% else %}
|
141 |
+
<span class="negative">{{ grade_diff }}</span>
|
142 |
+
{% endif %}
|
143 |
+
</td>
|
144 |
+
</tr>
|
145 |
+
<tr>
|
146 |
+
<td>
|
147 |
+
<div class="tooltip">
|
148 |
+
By Grade
|
149 |
+
<div class="tooltip-content">
|
150 |
+
<strong>Note:</strong> this By Grade model is trainned over 641 records.
|
151 |
+
</div>
|
152 |
+
</div>
|
153 |
+
</td>
|
154 |
+
<td>{{ bygrade_price }}</td>
|
155 |
+
<td>
|
156 |
+
{% if bygrade_diff >= 0 %}
|
157 |
+
<span class="positive">{{ bygrade_diff }}</span>
|
158 |
+
{% else %}
|
159 |
+
<span class="negative">{{ bygrade_diff }}</span>
|
160 |
+
{% endif %}
|
161 |
+
</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td>
|
165 |
+
<div class="tooltip">
|
166 |
+
Makable
|
167 |
+
<div class="tooltip-content">
|
168 |
+
<strong>Note:</strong> this Makable model is trainned over 1774 records.
|
169 |
+
</div>
|
170 |
+
</div>
|
171 |
+
</td>
|
172 |
+
<td>{{ makable_price }}</td>
|
173 |
+
<td>
|
174 |
+
{% if makable_diff >= 0 %}
|
175 |
+
<span class="positive">{{ makable_diff }}</span>
|
176 |
+
{% else %}
|
177 |
+
<span class="negative">{{ makable_diff }}</span>
|
178 |
+
{% endif %}
|
179 |
+
</td>
|
180 |
+
</tr>
|
181 |
+
</table>
|
182 |
+
<a href="{{ url_for('home') }}" class="btn">Make Another Prediction</a>
|
183 |
+
</div>
|
184 |
+
</body>
|
185 |
+
</html>
|
utils/tools.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from joblib import dump, load
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn import metrics
|
4 |
+
from flask import flash
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
from sklearn import metrics
|
10 |
+
|
11 |
+
|
12 |
+
def data_similarity(df,pt,index,column,value):
|
13 |
+
# index fetch
|
14 |
+
index = np.where(pt.index==index)[0][0]
|
15 |
+
similarity_scores = cosine_similarity(pt)
|
16 |
+
similar_items = sorted(list(enumerate(similarity_scores[index])),key=lambda x:x[1],reverse=True)[1:2]
|
17 |
+
|
18 |
+
data = []
|
19 |
+
for i in similar_items:
|
20 |
+
item = []
|
21 |
+
temp_df = df[df['index'] == pt.index[i[0]]]
|
22 |
+
item.extend(list(temp_df.drop_duplicates(index)[value].values))
|
23 |
+
#item.extend(list(temp_df.drop_duplicates(index)[column].values))
|
24 |
+
#item.extend(list(temp_df.drop_duplicates(index)[index].values))
|
25 |
+
|
26 |
+
data.append(item)
|
27 |
+
list = [item.item() if isinstance(item, np.generic) else item for sublist in data for item in sublist]
|
28 |
+
|
29 |
+
original_values = [list['Change_cts_value'].inverse_transform([val]) for val in list]
|
30 |
+
|
31 |
+
return original_values
|
32 |
+
|
33 |
+
def recommendation_generator(df):
|
34 |
+
try:
|
35 |
+
pivot_cts = df.pivot_table(index='EngCts', columns='MkblCts', values='Change_cts_value')
|
36 |
+
pivot_shp = df.pivot_table(index='EngShp', columns='MkblShp', values='change_shape_value')
|
37 |
+
pivot_qua = df.pivot_table(index='EngQua', columns='MkblQua', values='Change_quality_value')
|
38 |
+
pivot_col = df.pivot_table(index='EngCol', columns='MkblCol', values='Change_color_value')
|
39 |
+
pivot_cut = df.pivot_table(index='EngCut', columns='MkblCut', values='Change_cut_value')
|
40 |
+
|
41 |
+
#==============================================================================
|
42 |
+
# # Recommendation
|
43 |
+
#==============================================================================
|
44 |
+
cts_data = data_similarity(df,pivot_cts,'EngCts','MkblCts','Change_cts_value')
|
45 |
+
shp_data = data_similarity(df,pivot_shp,'EngShp','MkblShp','Change_shape_value')
|
46 |
+
qua_data = data_similarity(df,pivot_qua,'EngQua','MkblQua','Change_quality_value')
|
47 |
+
col_data = data_similarity(df,pivot_col,'EngCol','MkblCol','Change_color_value')
|
48 |
+
cut_data = data_similarity(df,pivot_cut,'EngCut','MkblCut','Change_cut_value')
|
49 |
+
|
50 |
+
return cts_data,shp_data,qua_data,col_data,cut_data
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
flash(f'Error generating recommendation: {e}', 'error')
|
54 |
+
return None
|
55 |
+
|
56 |
+
def classification_report(df):
|
57 |
+
try:
|
58 |
+
classifcation_data = df[["EngGraphCts","EngCts","EngShp","EngQua","EngCol","EngCut","EngPol","EngSym","EngFlo","EngNts","EngMikly","EngLab","EngAmt",
|
59 |
+
"MkblCts","MkblShp","MkblQua","MkblCol","MkblCut","MkblPol","MkblSym","MkblFlo","MkblNts","MkblMikly","MkblLab","MkblAmt"]]
|
60 |
+
|
61 |
+
#==============================================================================
|
62 |
+
# # Feature Engineering to generate new columns
|
63 |
+
#==============================================================================
|
64 |
+
# Make predictions
|
65 |
+
classifcation_data["Cts_diff_eng_mkbl"] = round(classifcation_data["EngCts"] - classifcation_data["MkblCts"],2)
|
66 |
+
|
67 |
+
# Create a new column 'Change_Label' based on the values in 'Cts_diff_eng_mkbl'
|
68 |
+
classifcation_data['Change_cts_value'] = classifcation_data['Cts_diff_eng_mkbl'].apply(
|
69 |
+
lambda x: str(x)+' negative change' if x < 0 else (str(x)+' positive change' if x > 0 else 'no change')
|
70 |
+
)
|
71 |
+
|
72 |
+
# Create a new column 'Shape_Change' based on the values in 'EngShp' and 'MkblShp'
|
73 |
+
classifcation_data['Change_shape_value'] = classifcation_data.apply(
|
74 |
+
lambda row: str(row['EngShp'])+' to '+str(row['MkblShp'])+' shape change' if row['EngShp'] != row['MkblShp'] else 'shape not change', axis=1
|
75 |
+
)
|
76 |
+
|
77 |
+
# Create a new column 'quality_Change' based on the values in 'EngQua' and 'MkblQua'
|
78 |
+
classifcation_data['Change_quality_value'] = classifcation_data.apply(
|
79 |
+
lambda row: str(row['EngQua'])+' to '+str(row['MkblQua'])+' quality change' if row['EngQua'] != row['MkblQua'] else 'quality not change', axis=1
|
80 |
+
)
|
81 |
+
|
82 |
+
# Create a new column 'color_Change' based on the values in 'EngCol' and 'MkblCol'
|
83 |
+
classifcation_data['Change_color_value'] = classifcation_data.apply(
|
84 |
+
lambda row: str(row['EngCol'])+' to '+str(row['MkblCol'])+' color change' if row['EngCol'] != row['MkblCol'] else 'color not change', axis=1
|
85 |
+
)
|
86 |
+
|
87 |
+
# Create a new column 'cut_Change' based on the values in 'EngCut' and 'MkblCut'
|
88 |
+
classifcation_data['Change_cut_value'] = classifcation_data.apply(
|
89 |
+
lambda row: str(row['EngCut'])+' to '+str(row['MkblCut'])+' cut change' if row['EngCut'] != row['MkblCut'] else 'cut not change', axis=1
|
90 |
+
)
|
91 |
+
|
92 |
+
#==============================================================================
|
93 |
+
# # Label Encoding and storing the label encoders
|
94 |
+
#==============================================================================
|
95 |
+
|
96 |
+
# Get list of categorical variables
|
97 |
+
s = (classifcation_data.dtypes =="object")
|
98 |
+
object_cols = list(s[s].index)
|
99 |
+
print("Categorical variables:")
|
100 |
+
print(object_cols)
|
101 |
+
|
102 |
+
# Make copy to avoid changing original data
|
103 |
+
label_data = classifcation_data.copy()
|
104 |
+
|
105 |
+
# Apply label encoder to each column with categorical data
|
106 |
+
label_encoder = LabelEncoder()
|
107 |
+
for col in object_cols:
|
108 |
+
label_data[col] = label_encoder.fit_transform(label_data[col])
|
109 |
+
dump(label_encoder, f"./AI_In_Diamond_Industry/Label_encoders/label_encoder_{col}.joblib")
|
110 |
+
|
111 |
+
label_data.head()
|
112 |
+
|
113 |
+
#==============================================================================
|
114 |
+
# # recommendation_system
|
115 |
+
#==============================================================================
|
116 |
+
df=classifcation_data.copy()
|
117 |
+
|
118 |
+
=recommendation_generator(df)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
return label_data
|
124 |
+
except Exception as e:
|
125 |
+
flash(f'Error generating classification report: {e}', 'error')
|
126 |
+
return None
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|