Spaces:
Sleeping
Sleeping
π Features
- π Interactive Map: View AQI predictions across different locations.
- π‘ Real-Time Data: Integrates live air quality data from Weatherbit API.
- π§ Deep Learning Model: Predicts AQI for the next 3 days based on PM2.5, PM10, NO2, SO2, CO, and current AQI.
- π Comparative Visualization: Shows bar plots comparing model predictions and API forecasts.
- π CSV Logging: Stores prediction data and actual AQI values from API into CSV files.
π οΈ Setup Instructions
1. Clone the Repository
git clone https://github.com/your-username/aqi-forecast-app.git
cd aqi-forecast-app
2. Install Requirements
We recommend using a virtual environment.
pip install -r requirements.txt
3. Add Your API Key
Replace the API_KEY
variable in app.py
with your Weatherbit API key.
API_KEY = "your_api_key_here"
4. Add Model and Scalers
Ensure the following model and scaler files are in the project directory:
FUTURE_AQI_v1.json
FUTURE_AQI_v1.weights.h5
scaler_X_cpcb_4.pkl
scaler_y_cpcb_4.pkl
These are required to load the trained model and scale inputs/outputs.
5. Run the App
python app.py
Visit http://127.0.0.1:5000 in your browser.
π File Structure
.
βββ app.py # Main Flask app
βββ FUTURE_AQI_v1.json # Model architecture
βββ FUTURE_AQI_v1.weights.h5 # Trained model weights
βββ scaler_X_cpcb_4.pkl # Scaler for input features
βββ scaler_y_cpcb_4.pkl # Scaler for output predictions
βββ aqi_data.csv # Stores model predictions
βββ aqi_data_actual_api.csv # Stores actual API forecast data
βββ templates/
βββ aqi_forecast_with_legend.html # HTML template
π AQI Color Codes
The app uses the following colors for AQI categories:
AQI Range | Color |
---|---|
0β50 | Green |
51β100 | Light Green |
101β150 | Orange |
151β200 | Red |
201β300 | Purple |
301+ | Gray |
π Future Improvements
- π Add support for historical AQI trends
- β³ Allow user-defined forecasting range
- π Deploy on cloud for public access