Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
@@ -12,20 +12,17 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
22 |
-
|
23 |
def translate(audio):
|
24 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
25 |
-
return
|
26 |
-
|
27 |
-
|
28 |
-
#
|
29 |
def synthesise(text):
|
30 |
inputs = tokenizer(text, return_tensors="pt")
|
31 |
with torch.no_grad():
|
@@ -42,7 +39,7 @@ def speech_to_speech_translation(audio):
|
|
42 |
|
43 |
title = "Cascaded STST - Danish to Dutch"
|
44 |
description = """
|
45 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in
|
46 |
[SpeechT5 TTS](https://huggingface.co/WasuratS/speecht5_finetuned_voxpopuli_nl) model for text-to-speech.
|
47 |
|
48 |

|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl").to(device)
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
|
|
22 |
def translate(audio):
|
23 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
24 |
+
return text
|
25 |
+
|
|
|
|
|
26 |
def synthesise(text):
|
27 |
inputs = tokenizer(text, return_tensors="pt")
|
28 |
with torch.no_grad():
|
|
|
39 |
|
40 |
title = "Cascaded STST - Danish to Dutch"
|
41 |
description = """
|
42 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any X language to target speech in Dutch ! <br/> Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and my fine tuned Microsoft's
|
43 |
[SpeechT5 TTS](https://huggingface.co/WasuratS/speecht5_finetuned_voxpopuli_nl) model for text-to-speech.
|
44 |
|
45 |

|