WasuratS commited on
Commit
b39e2bf
·
1 Parent(s): c19bedf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -4,7 +4,7 @@ import torch
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,9 +12,8 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,23 +21,25 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
  return outputs["text"]
27
 
28
 
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
32
  return speech.cpu()
33
 
34
-
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
-
42
  title = "Cascaded STST - Danish to Dutch"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Danish language to target speech in Dutch ! <br/> Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and my fine tuned Microsoft's
 
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ from transformers import VitsModel, VitsTokenizer
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
16
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
 
17
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
18
 
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
21
 
22
 
23
  def translate(audio):
24
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"})
25
  return outputs["text"]
26
 
27
 
28
+ #
29
  def synthesise(text):
30
+ inputs = tokenizer(text, return_tensors="pt")
31
+ with torch.no_grad():
32
+ outputs = model(inputs["input_ids"])
33
+ speech = outputs.audio[0]
34
+
35
  return speech.cpu()
36
 
 
37
  def speech_to_speech_translation(audio):
38
  translated_text = translate(audio)
39
  synthesised_speech = synthesise(translated_text)
40
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
41
  return 16000, synthesised_speech
42
 
 
43
  title = "Cascaded STST - Danish to Dutch"
44
  description = """
45
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Danish language to target speech in Dutch ! <br/> Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and my fine tuned Microsoft's