Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
@@ -12,9 +12,8 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("WasuratS/speecht5_finetuned_voxpopuli_nl").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -22,23 +21,25 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
-
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
-
|
42 |
title = "Cascaded STST - Danish to Dutch"
|
43 |
description = """
|
44 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Danish language to target speech in Dutch ! <br/> Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and my fine tuned Microsoft's
|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
from transformers import VitsModel, VitsTokenizer
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
16 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
|
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
21 |
|
22 |
|
23 |
def translate(audio):
|
24 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"})
|
25 |
return outputs["text"]
|
26 |
|
27 |
|
28 |
+
#
|
29 |
def synthesise(text):
|
30 |
+
inputs = tokenizer(text, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(inputs["input_ids"])
|
33 |
+
speech = outputs.audio[0]
|
34 |
+
|
35 |
return speech.cpu()
|
36 |
|
|
|
37 |
def speech_to_speech_translation(audio):
|
38 |
translated_text = translate(audio)
|
39 |
synthesised_speech = synthesise(translated_text)
|
40 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
41 |
return 16000, synthesised_speech
|
42 |
|
|
|
43 |
title = "Cascaded STST - Danish to Dutch"
|
44 |
description = """
|
45 |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Danish language to target speech in Dutch ! <br/> Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and my fine tuned Microsoft's
|