Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,31 +2,6 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import BlipForQuestionAnswering, AutoProcessor
|
4 |
from PIL import Image
|
5 |
-
import spaces
|
6 |
-
|
7 |
-
# Check device
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
|
10 |
-
# Load model and processor
|
11 |
-
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(device)
|
12 |
-
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
13 |
-
|
14 |
-
@spaces.GPU # ZeroGPU: Allocate GPU only when generating images
|
15 |
-
def answer_question(image, question):
|
16 |
-
inputs = processor(image, question, return_tensors="pt").to(device)
|
17 |
-
out = model.generate(**inputs)
|
18 |
-
return processor.decode(out[0], skip_special_tokens=True)
|
19 |
-
|
20 |
-
iface = gr.Interface(
|
21 |
-
fn=answer_question,
|
22 |
-
inputs=[gr.Image(type="pil"), gr.Textbox(placeholder="Enter your question")],
|
23 |
-
outputs=gr.Textbox(label="Answer"),
|
24 |
-
title="Visual Question Answering with BLIP",
|
25 |
-
description="Upload an image and ask a question about its content.",
|
26 |
-
import gradio as gr
|
27 |
-
import torch
|
28 |
-
from transformers import BlipForQuestionAnswering, AutoProcessor
|
29 |
-
from PIL import Image
|
30 |
|
31 |
# Check device
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -50,5 +25,3 @@ iface = gr.Interface(
|
|
50 |
)
|
51 |
|
52 |
iface.launch()
|
53 |
-
|
54 |
-
|
|
|
2 |
import torch
|
3 |
from transformers import BlipForQuestionAnswering, AutoProcessor
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Check device
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
25 |
)
|
26 |
|
27 |
iface.launch()
|
|
|
|