Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -23,8 +23,32 @@ iface = gr.Interface(
|
|
23 |
outputs=gr.Textbox(label="Answer"),
|
24 |
title="Visual Question Answering with BLIP",
|
25 |
description="Upload an image and ask a question about its content.",
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
iface.launch()
|
30 |
|
|
|
|
23 |
outputs=gr.Textbox(label="Answer"),
|
24 |
title="Visual Question Answering with BLIP",
|
25 |
description="Upload an image and ask a question about its content.",
|
26 |
+
import gradio as gr
|
27 |
+
import torch
|
28 |
+
from transformers import BlipForQuestionAnswering, AutoProcessor
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
# Check device
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
|
34 |
+
# Load model and processor
|
35 |
+
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(device)
|
36 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
37 |
+
|
38 |
+
def answer_question(image, question):
|
39 |
+
inputs = processor(image, question, return_tensors="pt").to(device)
|
40 |
+
out = model.generate(**inputs)
|
41 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=answer_question,
|
45 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(placeholder="Enter your question")],
|
46 |
+
outputs=gr.Textbox(label="Answer"),
|
47 |
+
title="Visual Question Answering with BLIP",
|
48 |
+
description="Upload an image and ask a question about its content.",
|
49 |
+
examples=[["image1.jpeg", "Is there a man or a woman in the image?"]],
|
50 |
)
|
51 |
|
52 |
iface.launch()
|
53 |
|
54 |
+
|