File size: 3,791 Bytes
cee775f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cadff73
 
 
 
 
 
 
 
 
cee775f
 
 
 
 
 
dcfe9dc
cee775f
 
 
dcfe9dc
 
cee775f
 
 
 
 
 
 
 
 
 
dcfe9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee775f
 
 
 
 
 
 
 
 
 
 
 
cadff73
cee775f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import gradio as gr
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig

# List of summarization models
model_names = [
    "google/bigbird-pegasus-large-arxiv",
    "facebook/bart-large-cnn",
    "google/t5-v1_1-large",
    "sshleifer/distilbart-cnn-12-6",
    "allenai/led-base-16384",
    "google/pegasus-xsum",
    "togethercomputer/LLaMA-2-7B-32K"
]

# Placeholder for the summarizer pipeline, tokenizer, and maximum tokens
summarizer = None
tokenizer = None
max_tokens = None

# Example text for summarization
example_text = (
    "Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—"
    "demonstrated by machines, as opposed to intelligence displayed by non-human animals and humans. "
    "Example tasks in which AI is employed include speech recognition, computer vision, language translation, "
    "autonomous vehicles, and game playing. AI research has been defined as the field of study of intelligent "
    "agents, which refers to any system that perceives its environment and takes actions that maximize its "
    "chance of achieving its goals."
)

# Function to load the selected model
def load_model(model_name):
    global summarizer, tokenizer, max_tokens
    try:
        # Load the summarization pipeline with the selected model
        summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.float32)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        config = AutoConfig.from_pretrained(model_name)

        # Set a reasonable default for max_tokens if not available
        max_tokens = getattr(config, 'max_position_embeddings', 1024)

        return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
    except Exception as e:
        return f"Failed to load model {model_name}. Error: {str(e)}"

# Function to summarize the input text
def summarize_text(input, min_length, max_length):
    if summarizer is None:
        return "No model loaded!"

    try:
        # Tokenize the input text and check the number of tokens
        input_tokens = tokenizer.encode(input, return_tensors="pt")
        num_tokens = input_tokens.shape[1]
        if num_tokens > max_tokens:
            return f"Error: Input exceeds the max token limit of {max_tokens}."

        # Ensure min/max lengths are within bounds
        min_summary_length = max(10, int(num_tokens * (min_length / 100)))
        max_summary_length = min(max_tokens, int(num_tokens * (max_length / 100)))

        # Summarize the input text
        output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length, truncation=True)
        return output[0]['summary_text']
    except Exception as e:
        return f"Summarization failed: {str(e)}"

# Gradio Interface
with gr.Blocks() as demo:
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
        load_button = gr.Button("Load Model")

    load_message = gr.Textbox(label="Load Status", interactive=False)

    min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
    max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)

    input_text = gr.Textbox(label="Input text to summarize", lines=6, value=example_text)
    summarize_button = gr.Button("Summarize Text")
    output_text = gr.Textbox(label="Summarized text", lines=4)

    load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
    summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider],
                           outputs=output_text)

demo.launch()