Update app.py
Browse files
app.py
CHANGED
@@ -24,21 +24,12 @@ def load_model(model_name):
|
|
24 |
global summarizer, tokenizer, max_tokens
|
25 |
try:
|
26 |
# Load the summarization pipeline with the selected model
|
27 |
-
summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.
|
28 |
-
# Load the tokenizer for the selected model
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
-
# Load the configuration for the selected model
|
31 |
config = AutoConfig.from_pretrained(model_name)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
max_tokens = config.max_position_embeddings
|
36 |
-
elif hasattr(config, 'n_positions'):
|
37 |
-
max_tokens = config.n_positions
|
38 |
-
elif hasattr(config, 'd_model'):
|
39 |
-
max_tokens = config.d_model # for T5 models, d_model is a rough proxy
|
40 |
-
else:
|
41 |
-
max_tokens = "Unknown"
|
42 |
|
43 |
return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
|
44 |
except Exception as e:
|
@@ -50,49 +41,41 @@ def summarize_text(input, min_length, max_length):
|
|
50 |
if summarizer is None:
|
51 |
return "No model loaded!"
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
|
68 |
|
69 |
# Gradio Interface
|
70 |
with gr.Blocks() as demo:
|
71 |
with gr.Row():
|
72 |
-
# Dropdown menu for selecting the model
|
73 |
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
|
74 |
-
# Button to load the selected model
|
75 |
load_button = gr.Button("Load Model")
|
76 |
|
77 |
-
# Textbox to display the load status
|
78 |
load_message = gr.Textbox(label="Load Status", interactive=False)
|
79 |
|
80 |
-
# Slider for minimum summary length
|
81 |
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
82 |
-
# Slider for maximum summary length
|
83 |
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)
|
84 |
|
85 |
-
# Textbox for inputting the text to be summarized
|
86 |
input_text = gr.Textbox(label="Input text to summarize", lines=6)
|
87 |
-
# Button to trigger the summarization
|
88 |
summarize_button = gr.Button("Summarize Text")
|
89 |
-
# Textbox to display the summarized text
|
90 |
output_text = gr.Textbox(label="Summarized text", lines=4)
|
91 |
|
92 |
-
# Define the actions for the load button and summarize button
|
93 |
load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
|
94 |
summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider],
|
95 |
outputs=output_text)
|
96 |
|
97 |
-
# Launch the Gradio interface
|
98 |
demo.launch()
|
|
|
24 |
global summarizer, tokenizer, max_tokens
|
25 |
try:
|
26 |
# Load the summarization pipeline with the selected model
|
27 |
+
summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.float32)
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
29 |
config = AutoConfig.from_pretrained(model_name)
|
30 |
|
31 |
+
# Set a reasonable default for max_tokens if not available
|
32 |
+
max_tokens = getattr(config, 'max_position_embeddings', 1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
|
35 |
except Exception as e:
|
|
|
41 |
if summarizer is None:
|
42 |
return "No model loaded!"
|
43 |
|
44 |
+
try:
|
45 |
+
# Tokenize the input text and check the number of tokens
|
46 |
+
input_tokens = tokenizer.encode(input, return_tensors="pt")
|
47 |
+
num_tokens = input_tokens.shape[1]
|
48 |
+
if num_tokens > max_tokens:
|
49 |
+
return f"Error: Input exceeds the max token limit of {max_tokens}."
|
50 |
+
|
51 |
+
# Ensure min/max lengths are within bounds
|
52 |
+
min_summary_length = max(10, int(num_tokens * (min_length / 100)))
|
53 |
+
max_summary_length = min(max_tokens, int(num_tokens * (max_length / 100)))
|
54 |
+
|
55 |
+
# Summarize the input text
|
56 |
+
output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length, truncation=True)
|
57 |
+
return output[0]['summary_text']
|
58 |
+
except Exception as e:
|
59 |
+
return f"Summarization failed: {str(e)}"
|
60 |
|
61 |
|
62 |
# Gradio Interface
|
63 |
with gr.Blocks() as demo:
|
64 |
with gr.Row():
|
|
|
65 |
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
|
|
|
66 |
load_button = gr.Button("Load Model")
|
67 |
|
|
|
68 |
load_message = gr.Textbox(label="Load Status", interactive=False)
|
69 |
|
|
|
70 |
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
|
|
71 |
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)
|
72 |
|
|
|
73 |
input_text = gr.Textbox(label="Input text to summarize", lines=6)
|
|
|
74 |
summarize_button = gr.Button("Summarize Text")
|
|
|
75 |
output_text = gr.Textbox(label="Summarized text", lines=4)
|
76 |
|
|
|
77 |
load_button.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
|
78 |
summarize_button.click(fn=summarize_text, inputs=[input_text, min_length_slider, max_length_slider],
|
79 |
outputs=output_text)
|
80 |
|
|
|
81 |
demo.launch()
|