File size: 10,039 Bytes
a0f720e 3c437e4 f8517eb e8fdfbc 651cc8d f3feb5a e8fdfbc 8397713 437fb66 f8517eb e8fdfbc 437fb66 3c437e4 651cc8d 5708f34 a89a730 651cc8d 749b680 651cc8d aad6c5c 651cc8d aad6c5c 651cc8d aad6c5c a89a730 651cc8d aad6c5c 437fb66 aad6c5c c3027e4 a89a730 a5a0365 a89a730 e8fdfbc 3af0361 e8fdfbc 9512b53 e8fdfbc af9e04c 3af0361 e8fdfbc f8517eb 5ad7d62 a41f448 5ad7d62 d82be3c aad6c5c 8010503 aad6c5c 678309b f8517eb e8fdfbc af9e04c 678309b e8fdfbc f8517eb e8fdfbc f8517eb 678309b af9e04c 9512b53 f3feb5a 3ce6014 8a5ab71 f3feb5a b2acfb0 7aaa73f f3feb5a 854a59f 91d9111 f3feb5a 91d9111 678309b 91d9111 3ce6014 91d9111 d82be3c 91d9111 fa7774c 980c380 b2acfb0 24d7a94 980c380 3ce6014 980c380 3ce6014 7aaa73f 437fb66 7aaa73f 749b680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import streamlit as st
from stmol import showmol
import py3Dmol
import requests
import biotite.structure.io as bsio
import random
import hashlib
import urllib3
from Bio.Blast import NCBIWWW, NCBIXML
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
import time
import urllib.parse
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
st.set_page_config(layout='wide')
st.sidebar.title('๐ฎ GenPro2')
st.sidebar.write('GenPro2 is an end-to-end protein sequence generator, structure predictor, and analysis that uses [ESMFold](https://esmatlas.com/explore?at=1%2C1%2C21.999999344348925) and the ESM-2 language model | beta v2.12')
def generate_sequence_from_words(words, length):
seed = ' '.join(words).encode('utf-8')
random.seed(hashlib.md5(seed).hexdigest())
amino_acids = "ACDEFGHIKLMNPQRSTVWY"
return ''.join(random.choice(amino_acids) for _ in range(length))
def render_mol(pdb):
viewer = py3Dmol.view(width='100%', height='400px')
viewer.addModel(pdb, 'pdb')
viewer.setStyle({'cartoon': {'color': 'spectrum'}})
viewer.setBackgroundColor('white')
viewer.zoomTo()
viewer.zoom(0.8) # Slightly zoomed out view
viewer.spin(True)
viewer.render()
# Responsive design for mobile
st.markdown("""
<style>
.stmol-container {
width: 100% !important;
height: 400px !important;
max-width: 800px;
margin: 0 auto;
}
@media (max-width: 600px) {
.stmol-container {
height: 300px !important;
}
}
</style>
""", unsafe_allow_html=True)
showmol(viewer, height=400, width=None)
def perform_blast_analysis(sequence):
st.subheader('Protein Analysis')
with st.spinner("Analyzing generated protein... This may take several minutes. Stay tuned!"):
progress_bar = st.progress(0)
for i in range(100):
progress_bar.progress(i + 1)
time.sleep(1.9) # Analysis time
try:
record = SeqRecord(Seq(sequence), id='random_protein')
result_handle = NCBIWWW.qblast("blastp", "swissprot", record.seq)
blast_record = NCBIXML.read(result_handle)
if blast_record.alignments:
alignment = blast_record.alignments[0] # Get the top hit
hsp = alignment.hsps[0] # Get the first (best) HSP
# Extract protein name and organism
title_parts = alignment.title.split('|')
protein_name = title_parts[-1].strip()
organism = title_parts[-2].split('OS=')[-1].split('OX=')[0].strip()
# Calculate identity percentage
identity_percentage = (hsp.identities / hsp.align_length) * 100
st.write(f"**Top Match:** {protein_name}")
st.write(f"**UniProt ID:** {organism}")
st.write(f"**Sequence Identity Match:** {identity_percentage:.2f}%")
# Fetch protein function (if available)
if hasattr(alignment, 'description') and alignment.description:
st.write(f"**Potential Function:** {alignment.description}")
else:
st.write("No significant matches found in the database. This might be a unique protein sequence!")
except Exception as e:
st.error(f"An error occurred during protein analysis: {str(e)}")
st.write("Please try again later, BLAST servers could be experiencing a delay.")
def update(sequence, word1, word2, word3, sequence_length):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
}
try:
response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/',
headers=headers,
data=sequence,
verify=False,
timeout=300)
response.raise_for_status()
pdb_string = response.content.decode('utf-8')
with open('predicted.pdb', 'w') as f:
f.write(pdb_string)
struct = bsio.load_structure('predicted.pdb', extra_fields=["b_factor"])
b_value = round(struct.b_factor.mean(), 2)
st.session_state.structure_info = {
'pdb_string': pdb_string,
'b_value': b_value,
'word1': word1,
'word2': word2,
'word3': word3,
'sequence_length': sequence_length
}
st.session_state.show_analyze_button = True
except requests.exceptions.RequestException as e:
st.error(f"An error occurred while calling the API: {str(e)}")
st.write("Please try again later or contact support if the issue persists.")
def share_on_twitter(word1, word2, word3, length, plddt):
tweet_text = f"I just generated a unique protein using #GenPro2 by @WandsAI using the seed words #{word1}, #{word2}, #{word3} + sequence length of {length}. My Protein has a {plddt}% plDDT score! #PostYourProtein"
tweet_url = f"https://twitter.com/intent/tweet?text={urllib.parse.quote(tweet_text)}"
return tweet_url
# Initialize session state variables
if 'sequence' not in st.session_state:
st.session_state.sequence = None
if 'show_analyze_button' not in st.session_state:
st.session_state.show_analyze_button = False
if 'structure_info' not in st.session_state:
st.session_state.structure_info = None
st.title("๐ User Guide:")
st.sidebar.subheader("Generate Sequence from Words")
word1 = st.sidebar.text_input("Word 1")
word2 = st.sidebar.text_input("Word 2")
word3 = st.sidebar.text_input("Word 3")
sequence_length = st.sidebar.number_input("Sequence Length", min_value=50, max_value=400, value=100, step=10)
# Information for users
st.info("""
Protein Length Guide:
- 50-100 amino acids: Small proteins/peptides
- 100-300 amino acids: Average protein domains
- 300-500 amino acids: Larger single-domain proteins
""")
st.markdown("""
1. Start by entering any three seed words of your choice and select a sequence length in the sidebar.
2. Click 'Generate and Predict' to generate a unique protein sequence based on your inputs.
3. GenPro2 then predicts the 3D structure of your protein and provides a confidence score.
More about GenPro2 and Proteins:
Your unique protein could be the key to unlocking new therapeutic possibilities or understanding disease mechanisms. Who knows? Your next generated sequence might just lead to a breakthrough. Start your journey into computational protein exploration! [Learn more](https://www.youtube.com/watch?v=KpedmJdrTpY)
""")
if st.sidebar.button('Generate and Predict'):
if word1 and word2 and word3:
sequence = generate_sequence_from_words([word1, word2, word3], sequence_length)
st.session_state.sequence = sequence
st.sidebar.text_area("Generated Sequence", sequence, height=100)
st.sidebar.info("Note: The same words and sequence length will always produce the same sequence.")
with st.spinner("Predicting protein structure... This may take a few minutes."):
update(sequence, word1, word2, word3, sequence_length)
else:
st.sidebar.warning("Please enter all three words to generate a sequence.")
# Display structure information if available
if st.session_state.structure_info:
info = st.session_state.structure_info
st.subheader(f'Predicted protein structure using seed: {info["word1"]}, {info["word2"]}, and {info["word3"]} + sequence length {info["sequence_length"]}')
render_mol(info['pdb_string'])
st.subheader('plDDT Confidence Score')
st.write('plDDT is a bench mark for scoring the confidence level of protein folding predictions based on a scale from 0-100%. 70% or more is good!')
plddt_score = int(info["b_value"] * 100)
st.info(f'Your plDDT score is: {plddt_score}%')
st.subheader("Share your unique protein on X(Twitter)")
st.markdown("""
<div style='background-color: #e6f2ff; padding: 10px; border-radius: 5px; font-size: 0.8em;'>
<ol>
<li>Take a screenshot of the protein structure above.</li>
<li>Click the 'Share Results' link below to open a pre-filled post with your proteins seed-words and plDDT score.</li>
<li>Be sure to attach a screenshot of your protein before you post!</li>
</ol>
</div>
""", unsafe_allow_html=True)
tweet_url = share_on_twitter(info["word1"], info["word2"], info["word3"], info["sequence_length"], plddt_score)
st.markdown(f"[Share Results]({tweet_url})")
st.markdown("""
## What to do next:
""")
col1, col2 = st.columns(2)
with col1:
if st.button('Analyze Protein'):
perform_blast_analysis(st.session_state.sequence)
with col2:
st.download_button(
label="Download PDB",
data=info['pdb_string'],
file_name='predicted.pdb',
mime='text/plain',
)
st.markdown("""
If you discover an interesting protein structure, you can explore it even further:
1. Click the 'analyze protein' button to search the [BLAST](https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) protein database and see if your protein matches any known sequences. The sequence identity will show how close your sequence matches. *Note this can take several minutes
2. Download your protein data and visit the [Protein Data Bank (PDB)](https://www.rcsb.org/) to match your protein structure against known protein structures.
3. If you think you've discovered a unique and useful protein share it with the world on social media!
**Remember, this folding is based on randomly generated sequences. Interpret the results with caution.
Enjoy exploring the world of protein sequences!
""")
|