Spaces:
Build error
Build error
File size: 16,663 Bytes
8e839af 3cc6bdd 8e839af 3cc6bdd 02273e7 3cc6bdd 02273e7 3cc6bdd 69cee64 3cc6bdd 8e839af 02273e7 69cee64 02273e7 3cc6bdd 02273e7 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 02273e7 69cee64 3cc6bdd 02273e7 3cc6bdd 02273e7 3cc6bdd 02273e7 3cc6bdd 02273e7 3cc6bdd 8e839af 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 69cee64 3cc6bdd 02273e7 3cc6bdd 02273e7 3cc6bdd 69cee64 3cc6bdd 69cee64 8e839af 02273e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gradio as gr
import pandas as pd
from simple_salesforce import Salesforce
from datetime import datetime
import logging
import json
from faker import Faker
import random
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global connection and state
sf_connection = None
available_objects = []
object_schemas = {}
fake = Faker()
def get_salesforce_objects():
"""Get list of available Salesforce objects"""
global sf_connection, available_objects
if not sf_connection:
return []
try:
# Get commonly used objects and test their accessibility
common_objects = [
'Account', 'Contact', 'Lead', 'Opportunity', 'Case',
'Campaign', 'User', 'Product2', 'Task', 'Event'
]
available_objects = []
for obj_name in common_objects:
try:
obj = getattr(sf_connection, obj_name)
obj.describe()
available_objects.append(obj_name)
except:
continue
return available_objects
except Exception as e:
logger.error(f"Error getting objects: {str(e)}")
return ['Account', 'Contact', 'Lead']
def get_object_schema(object_name):
"""Get schema for a specific Salesforce object"""
global sf_connection, object_schemas
if not sf_connection or not object_name:
return {}
try:
if object_name not in object_schemas:
obj = getattr(sf_connection, object_name)
metadata = obj.describe()
schema = {
'name': object_name,
'label': metadata.get('label', object_name),
'fields': []
}
for field in metadata['fields']:
if field['createable'] or field['updateable']:
field_info = {
'name': field['name'],
'label': field['label'],
'type': field['type'],
'required': not field['nillable'] and not field['defaultedOnCreate'],
'length': field.get('length', 0),
'picklistValues': [pv['value'] for pv in field.get('picklistValues', [])]
}
schema['fields'].append(field_info)
object_schemas[object_name] = schema
return object_schemas[object_name]
except Exception as e:
logger.error(f"Error getting schema for {object_name}: {str(e)}")
return {}
def generate_test_data(object_name, fields, num_records=100):
"""Generate test data using Faker for specified object and fields"""
try:
schema = get_object_schema(object_name)
if not schema:
return None, "β Could not get object schema"
records = []
for _ in range(num_records):
record = {}
for field_name in fields:
field_info = next((f for f in schema['fields'] if f['name'] == field_name), None)
if not field_info:
continue
field_type = field_info['type']
# Generate data based on field type and name
if field_name.lower() in ['firstname', 'first_name']:
record[field_name] = fake.first_name()
elif field_name.lower() in ['lastname', 'last_name']:
record[field_name] = fake.last_name()
elif field_name.lower() in ['name'] and object_name == 'Account':
record[field_name] = fake.company()
elif field_name.lower() in ['email']:
record[field_name] = fake.email()
elif field_name.lower() in ['phone']:
record[field_name] = fake.phone_number()
elif field_name.lower() in ['website']:
record[field_name] = fake.url()
elif field_name.lower() in ['street', 'mailingstreet', 'billingstreet']:
record[field_name] = fake.street_address()
elif field_name.lower() in ['city', 'mailingcity', 'billingcity']:
record[field_name] = fake.city()
elif field_name.lower() in ['state', 'mailingstate', 'billingstate']:
record[field_name] = fake.state_abbr()
elif field_name.lower() in ['postalcode', 'mailingpostalcode', 'billingpostalcode']:
record[field_name] = fake.zipcode()
elif field_name.lower() in ['country', 'mailingcountry', 'billingcountry']:
record[field_name] = 'US'
elif field_type == 'picklist' and field_info['picklistValues']:
record[field_name] = random.choice(field_info['picklistValues'])
elif field_type == 'boolean':
record[field_name] = random.choice([True, False])
elif field_type in ['int', 'double', 'currency']:
if 'annual' in field_name.lower() or 'revenue' in field_name.lower():
record[field_name] = random.randint(100000, 10000000)
else:
record[field_name] = random.randint(1, 1000)
elif field_type == 'date':
record[field_name] = fake.date_between(start_date='-1y', end_date='today').isoformat()
elif field_type == 'datetime':
record[field_name] = fake.date_time_between(start_date='-1y', end_date='now').isoformat()
elif field_type in ['string', 'textarea']:
if field_info['length'] > 100:
record[field_name] = fake.text(max_nb_chars=min(field_info['length'], 200))
else:
record[field_name] = fake.sentence(nb_words=3)[:field_info['length']]
else:
# Default string value
record[field_name] = f"Test {field_name}"
records.append(record)
# Create DataFrame
df = pd.DataFrame(records)
# Save to CSV
filename = f"test_data_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(filename, index=False)
return filename, f"β
Generated {num_records} test records for {object_name}\nFields: {', '.join(fields)}\nFile: {filename}"
except Exception as e:
logger.error(f"Error generating test data: {str(e)}")
return None, f"β Error generating test data: {str(e)}"
def enhanced_salesforce_operation(username, password, security_token, sandbox, operation,
object_name, selected_fields, csv_file, num_records):
"""Enhanced Salesforce operations with full functionality"""
global sf_connection
# Step 1: Connect to Salesforce
if not username or not password or not security_token:
return "β Please provide username, password, and security token", None, "[]", "[]"
try:
domain = 'test' if sandbox else None
sf_connection = Salesforce(
username=username,
password=password,
security_token=security_token,
domain=domain
)
connection_msg = f"β
Connected to Salesforce as {username}\n"
# Get available objects
objects = get_salesforce_objects()
objects_json = json.dumps(objects)
# Step 2: Handle different operations
if operation == "connect_only":
return connection_msg + f"Available objects: {', '.join(objects)}", None, objects_json, "[]"
elif operation == "get_schema":
if not object_name:
return connection_msg + "β Please select an object", None, objects_json, "[]"
schema = get_object_schema(object_name)
fields = [f"{f['name']} ({f['type']})" for f in schema.get('fields', [])]
fields_json = json.dumps([f['name'] for f in schema.get('fields', [])])
return (connection_msg + f"π Schema for {object_name}:\n" +
f"Fields: {len(fields)}\n" + "\n".join(fields[:20]) +
(f"\n... and {len(fields)-20} more fields" if len(fields) > 20 else "")), None, objects_json, fields_json
elif operation == "generate_data":
if not object_name or not selected_fields:
return connection_msg + "β Please select object and fields", None, objects_json, "[]"
fields_list = selected_fields.split(',') if isinstance(selected_fields, str) else selected_fields
filename, result = generate_test_data(object_name, fields_list, num_records)
return connection_msg + result, filename, objects_json, "[]"
elif operation == "import_data":
if not csv_file:
return connection_msg + "β Please upload a CSV file", None, objects_json, "[]"
if not object_name:
return connection_msg + "β Please select target object", None, objects_json, "[]"
# Read and process file
try:
if csv_file.name.endswith('.csv'):
df = pd.read_csv(csv_file.name)
elif csv_file.name.endswith(('.xlsx', '.xls')):
df = pd.read_excel(csv_file.name)
else:
return connection_msg + "β Please upload a CSV or Excel file", None, objects_json, "[]"
if df.empty:
return connection_msg + "β The uploaded file is empty", None, objects_json, "[]"
# Clean data
records = df.to_dict('records')
cleaned_records = []
for record in records:
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
cleaned_records.append(cleaned_record)
# Import using bulk API
result = sf_connection.bulk.__getattr__(object_name).insert(cleaned_records)
# Process results
success_count = sum(1 for r in result if r.get('success'))
error_count = len(result) - success_count
import_msg = f"\nπ€ Import Results:\n"
import_msg += f"Object: {object_name}\n"
import_msg += f"Total records: {len(records)}\n"
import_msg += f"β
Successful: {success_count}\n"
import_msg += f"β Failed: {error_count}\n"
if error_count > 0:
errors = [r.get('errors', []) for r in result if not r.get('success')]
import_msg += f"\nFirst few errors: {str(errors[:3])}"
return connection_msg + import_msg, None, objects_json, "[]"
except Exception as e:
return connection_msg + f"β Import error: {str(e)}", None, objects_json, "[]"
elif operation == "export_data":
if not object_name:
return connection_msg + "β Please select an object", None, objects_json, "[]"
try:
schema = get_object_schema(object_name)
# Use selected fields or default fields
if selected_fields:
fields_list = selected_fields.split(',') if isinstance(selected_fields, str) else selected_fields
fields_list = [f.strip() for f in fields_list]
else:
# Use first 10 fields as default
fields_list = [f['name'] for f in schema.get('fields', [])[:10]]
fields_str = ', '.join(fields_list)
query = f"SELECT {fields_str} FROM {object_name} LIMIT 100"
result = sf_connection.query_all(query)
records = result['records']
if records:
df = pd.DataFrame(records)
if 'attributes' in df.columns:
df = df.drop('attributes', axis=1)
# Save export file
export_file = f"export_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(export_file, index=False)
export_msg = f"\nπ₯ Export Results:\n"
export_msg += f"Object: {object_name}\n"
export_msg += f"Records exported: {len(records)}\n"
export_msg += f"Fields: {', '.join(df.columns)}\n"
export_msg += f"Sample data:\n{df.head(3).to_string()}"
return connection_msg + export_msg, export_file, objects_json, "[]"
else:
return connection_msg + f"\nβ No {object_name} records found", None, objects_json, "[]"
except Exception as e:
return connection_msg + f"\nβ Export error: {str(e)}", None, objects_json, "[]"
else:
return connection_msg + "β Invalid operation", None, objects_json, "[]"
except Exception as e:
error_msg = str(e)
if "INVALID_LOGIN" in error_msg:
return "β Invalid credentials. Please check your username, password, and security token.", None, "[]", "[]"
elif "API_DISABLED_FOR_ORG" in error_msg:
return "β API access is disabled. Contact your Salesforce admin.", None, "[]", "[]"
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
return "β Security token required. Append it to your password.", None, "[]", "[]"
else:
return f"β Connection failed: {error_msg}", None, "[]", "[]"
# Create the enhanced interface
demo = gr.Interface(
fn=enhanced_salesforce_operation,
inputs=[
gr.Textbox(label="Username", placeholder="[email protected]"),
gr.Textbox(label="Password", type="password"),
gr.Textbox(label="Security Token", type="password"),
gr.Checkbox(label="Sandbox Environment"),
gr.Dropdown(
label="Operation",
choices=[
"connect_only",
"get_schema",
"generate_data",
"import_data",
"export_data"
],
value="connect_only"
),
gr.Dropdown(label="Salesforce Object", choices=[], allow_custom_value=True),
gr.Textbox(label="Selected Fields (comma-separated)", placeholder="Name,Email,Phone"),
gr.File(label="CSV/Excel File (for import)", file_types=[".csv", ".xlsx", ".xls"]),
gr.Slider(label="Number of Test Records", minimum=10, maximum=1000, value=100, step=10)
],
outputs=[
gr.Textbox(label="Results", lines=15),
gr.File(label="Download File"),
gr.Textbox(label="Available Objects (JSON)", visible=False),
gr.Textbox(label="Available Fields (JSON)", visible=False)
],
title="π Enhanced Salesforce Data Loader",
description="""
**Advanced Salesforce Data Management Tool**
**Workflow:**
1. **Connect**: Enter credentials, select 'connect_only' to see available objects
2. **Get Schema**: Select object, choose 'get_schema' to see fields
3. **Generate Data**: Select fields, choose 'generate_data' to create test data with Faker
4. **Import**: Upload CSV/Excel, select target object, choose 'import_data'
5. **Export**: Select object and fields, choose 'export_data'
**Features:**
- β
Live object detection from your Salesforce org
- β
Dynamic schema reading with field types
- β
Intelligent test data generation using Faker
- β
Field mapping and validation
- β
Bulk operations for performance
- β
Relationship data support (Account + Contact)
""",
examples=[
["[email protected]", "password123", "token123", False, "connect_only", "", "", None, 100],
]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |