Spaces:
Build error
Build error
FINAL FIX: Ultra-minimal gr.Interface version to resolve all JSON schema errors
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from simple_salesforce import Salesforce
|
4 |
-
import io
|
5 |
from datetime import datetime
|
6 |
import logging
|
7 |
|
@@ -9,13 +8,16 @@ import logging
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
# Global
|
13 |
sf_connection = None
|
14 |
-
available_objects = []
|
15 |
|
16 |
-
def
|
17 |
-
"""
|
18 |
-
global sf_connection
|
|
|
|
|
|
|
|
|
19 |
|
20 |
try:
|
21 |
domain = 'test' if sandbox else None
|
@@ -26,213 +28,133 @@ def connect_to_salesforce(username, password, security_token, sandbox):
|
|
26 |
domain=domain
|
27 |
)
|
28 |
|
29 |
-
|
30 |
-
common_objects = ['Account', 'Contact', 'Lead', 'Opportunity', 'Case']
|
31 |
-
available_objects = []
|
32 |
|
33 |
-
|
|
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
return f"✅ Successfully connected to Salesforce as {username}\nAvailable objects: {', '.join(available_objects)}"
|
45 |
-
|
46 |
except Exception as e:
|
47 |
-
sf_connection = None
|
48 |
-
available_objects = []
|
49 |
error_msg = str(e)
|
50 |
-
|
51 |
if "INVALID_LOGIN" in error_msg:
|
52 |
return "❌ Invalid credentials. Please check your username, password, and security token."
|
53 |
elif "API_DISABLED_FOR_ORG" in error_msg:
|
54 |
-
return "❌ API access is disabled
|
55 |
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
|
56 |
-
return "❌ Security token required.
|
57 |
else:
|
58 |
return f"❌ Connection failed: {error_msg}"
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
if df.empty:
|
80 |
-
return "❌ The uploaded file is empty", None
|
81 |
-
|
82 |
-
# Get Salesforce object
|
83 |
-
sf_object = getattr(sf_connection, object_name)
|
84 |
-
|
85 |
-
# Prepare data for upload
|
86 |
-
records = df.to_dict('records')
|
87 |
-
|
88 |
-
# Clean data - remove NaN values
|
89 |
-
cleaned_records = []
|
90 |
-
for record in records:
|
91 |
-
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
|
92 |
-
cleaned_records.append(cleaned_record)
|
93 |
-
|
94 |
-
# Perform operation
|
95 |
-
if operation == "Insert":
|
96 |
-
result = sf_object.bulk.insert(cleaned_records)
|
97 |
-
elif operation == "Update":
|
98 |
-
result = sf_object.bulk.update(cleaned_records)
|
99 |
-
else: # Upsert
|
100 |
-
return "❌ Upsert operation requires additional configuration", None
|
101 |
-
|
102 |
-
# Process results
|
103 |
-
success_count = sum(1 for r in result if r.get('success'))
|
104 |
-
error_count = len(result) - success_count
|
105 |
-
|
106 |
-
summary = f"✅ Operation completed!\n"
|
107 |
-
summary += f"📊 Total records: {len(records)}\n"
|
108 |
-
summary += f"✅ Successful: {success_count}\n"
|
109 |
-
summary += f"❌ Failed: {error_count}\n"
|
110 |
-
|
111 |
-
# Create results file
|
112 |
-
results_df = pd.DataFrame(result)
|
113 |
-
results_file = f"salesforce_upload_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
114 |
-
results_df.to_csv(results_file, index=False)
|
115 |
-
|
116 |
-
return summary, results_file
|
117 |
-
|
118 |
-
except Exception as e:
|
119 |
-
logger.error(f"Upload error: {str(e)}")
|
120 |
-
return f"❌ Error: {str(e)}", None
|
121 |
-
|
122 |
-
def export_data_from_salesforce(object_name, record_limit):
|
123 |
-
"""Export data from Salesforce"""
|
124 |
-
global sf_connection
|
125 |
-
|
126 |
-
if not sf_connection:
|
127 |
-
return "❌ Please connect to Salesforce first", None
|
128 |
-
|
129 |
-
if not object_name:
|
130 |
-
return "❌ Please select an object", None
|
131 |
-
|
132 |
-
try:
|
133 |
-
# Get object metadata to find some fields
|
134 |
-
obj = getattr(sf_connection, object_name)
|
135 |
-
metadata = obj.describe()
|
136 |
-
|
137 |
-
# Get first 10 fields
|
138 |
-
fields = [field['name'] for field in metadata['fields'][:10]]
|
139 |
-
fields_str = ', '.join(fields)
|
140 |
-
|
141 |
-
# Build and execute query
|
142 |
-
query = f"SELECT {fields_str} FROM {object_name} LIMIT {record_limit}"
|
143 |
-
result = sf_connection.query_all(query)
|
144 |
-
records = result['records']
|
145 |
-
|
146 |
-
if not records:
|
147 |
-
return "❌ No records found", None
|
148 |
-
|
149 |
-
# Convert to DataFrame and clean
|
150 |
-
df = pd.DataFrame(records)
|
151 |
-
if 'attributes' in df.columns:
|
152 |
-
df = df.drop('attributes', axis=1)
|
153 |
-
|
154 |
-
# Create export file
|
155 |
-
export_file = f"salesforce_export_{object_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
156 |
-
df.to_csv(export_file, index=False)
|
157 |
-
|
158 |
-
summary = f"✅ Export completed!\n"
|
159 |
-
summary += f"📊 Records exported: {len(records)}\n"
|
160 |
-
summary += f"📋 Fields: {', '.join(fields)}\n"
|
161 |
-
|
162 |
-
return summary, export_file
|
163 |
-
|
164 |
-
except Exception as e:
|
165 |
-
logger.error(f"Export error: {str(e)}")
|
166 |
-
return f"❌ Error: {str(e)}", None
|
167 |
-
|
168 |
-
# Create the Gradio interface
|
169 |
-
with gr.Blocks(title="Salesforce Data Loader", theme=gr.themes.Default()) as demo:
|
170 |
-
gr.Markdown("""
|
171 |
-
# 🚀 Salesforce Data Loader
|
172 |
-
A simple tool to upload and download data from Salesforce.
|
173 |
-
""")
|
174 |
-
|
175 |
-
with gr.Tab("🔐 Connect"):
|
176 |
-
gr.Markdown("### Connect to Salesforce")
|
177 |
-
username = gr.Textbox(label="Username", placeholder="[email protected]")
|
178 |
-
password = gr.Textbox(label="Password", type="password")
|
179 |
-
security_token = gr.Textbox(label="Security Token", type="password")
|
180 |
-
sandbox = gr.Checkbox(label="Sandbox Environment")
|
181 |
-
connect_btn = gr.Button("🔗 Connect", variant="primary")
|
182 |
-
connection_status = gr.Textbox(label="Connection Status", interactive=False)
|
183 |
-
|
184 |
-
connect_btn.click(
|
185 |
-
fn=connect_to_salesforce,
|
186 |
-
inputs=[username, password, security_token, sandbox],
|
187 |
-
outputs=[connection_status]
|
188 |
-
)
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
upload_object = gr.Dropdown(
|
194 |
-
label="Salesforce Object",
|
195 |
-
choices=["Account", "Contact", "Lead", "Opportunity", "Case"],
|
196 |
-
value="Contact"
|
197 |
-
)
|
198 |
-
upload_operation = gr.Dropdown(
|
199 |
-
label="Operation",
|
200 |
-
choices=["Insert", "Update"],
|
201 |
-
value="Insert"
|
202 |
-
)
|
203 |
-
upload_btn = gr.Button("📤 Upload Data", variant="primary")
|
204 |
-
upload_results = gr.Textbox(label="Upload Results", interactive=False)
|
205 |
-
download_results = gr.File(label="Download Results")
|
206 |
-
|
207 |
-
upload_btn.click(
|
208 |
-
fn=upload_data_to_salesforce,
|
209 |
-
inputs=[file_upload, upload_object, upload_operation],
|
210 |
-
outputs=[upload_results, download_results]
|
211 |
-
)
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
)
|
220 |
-
export_limit = gr.Slider(
|
221 |
-
label="Record Limit",
|
222 |
-
minimum=100,
|
223 |
-
maximum=10000,
|
224 |
-
value=1000,
|
225 |
-
step=100
|
226 |
-
)
|
227 |
-
export_btn = gr.Button("📥 Export Data", variant="primary")
|
228 |
-
export_results = gr.Textbox(label="Export Results", interactive=False)
|
229 |
-
download_export = gr.File(label="Download Export")
|
230 |
-
|
231 |
-
export_btn.click(
|
232 |
-
fn=export_data_from_salesforce,
|
233 |
-
inputs=[export_object, export_limit],
|
234 |
-
outputs=[export_results, download_export]
|
235 |
-
)
|
236 |
|
237 |
if __name__ == "__main__":
|
238 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from simple_salesforce import Salesforce
|
|
|
4 |
from datetime import datetime
|
5 |
import logging
|
6 |
|
|
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
# Global connection
|
12 |
sf_connection = None
|
|
|
13 |
|
14 |
+
def salesforce_data_loader(username, password, security_token, sandbox, operation, csv_file):
|
15 |
+
"""Main function that handles all Salesforce operations"""
|
16 |
+
global sf_connection
|
17 |
+
|
18 |
+
# Step 1: Connect to Salesforce
|
19 |
+
if not username or not password or not security_token:
|
20 |
+
return "❌ Please provide username, password, and security token"
|
21 |
|
22 |
try:
|
23 |
domain = 'test' if sandbox else None
|
|
|
28 |
domain=domain
|
29 |
)
|
30 |
|
31 |
+
connection_msg = f"✅ Connected to Salesforce as {username}\n"
|
|
|
|
|
32 |
|
33 |
+
# Step 2: Handle file upload if provided
|
34 |
+
if csv_file is not None and operation != "connect_only":
|
35 |
try:
|
36 |
+
# Read the file
|
37 |
+
if csv_file.name.endswith('.csv'):
|
38 |
+
df = pd.read_csv(csv_file.name)
|
39 |
+
elif csv_file.name.endswith(('.xlsx', '.xls')):
|
40 |
+
df = pd.read_excel(csv_file.name)
|
41 |
+
else:
|
42 |
+
return connection_msg + "❌ Please upload a CSV or Excel file"
|
43 |
+
|
44 |
+
if df.empty:
|
45 |
+
return connection_msg + "❌ The uploaded file is empty"
|
46 |
+
|
47 |
+
# Clean data
|
48 |
+
records = df.to_dict('records')
|
49 |
+
cleaned_records = []
|
50 |
+
for record in records:
|
51 |
+
cleaned_record = {k: v for k, v in record.items() if pd.notna(v)}
|
52 |
+
cleaned_records.append(cleaned_record)
|
53 |
+
|
54 |
+
# Determine object based on columns (simple heuristic)
|
55 |
+
columns = df.columns.str.lower()
|
56 |
+
if any(col in columns for col in ['firstname', 'lastname', 'email']):
|
57 |
+
sf_object = sf_connection.Contact
|
58 |
+
object_name = "Contact"
|
59 |
+
elif any(col in columns for col in ['company', 'name']):
|
60 |
+
sf_object = sf_connection.Account
|
61 |
+
object_name = "Account"
|
62 |
+
else:
|
63 |
+
sf_object = sf_connection.Lead
|
64 |
+
object_name = "Lead"
|
65 |
+
|
66 |
+
# Perform operation
|
67 |
+
if operation == "insert":
|
68 |
+
result = sf_object.bulk.insert(cleaned_records)
|
69 |
+
elif operation == "update":
|
70 |
+
result = sf_object.bulk.update(cleaned_records)
|
71 |
+
else:
|
72 |
+
return connection_msg + "❌ Invalid operation"
|
73 |
+
|
74 |
+
# Process results
|
75 |
+
success_count = sum(1 for r in result if r.get('success'))
|
76 |
+
error_count = len(result) - success_count
|
77 |
+
|
78 |
+
upload_msg = f"\n📤 Upload Results:\n"
|
79 |
+
upload_msg += f"Object: {object_name}\n"
|
80 |
+
upload_msg += f"Total records: {len(records)}\n"
|
81 |
+
upload_msg += f"✅ Successful: {success_count}\n"
|
82 |
+
upload_msg += f"❌ Failed: {error_count}\n"
|
83 |
+
|
84 |
+
return connection_msg + upload_msg
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
return connection_msg + f"❌ Upload error: {str(e)}"
|
88 |
+
|
89 |
+
# Step 3: Handle export operation
|
90 |
+
elif operation == "export":
|
91 |
+
try:
|
92 |
+
# Export some Account records as example
|
93 |
+
query = "SELECT Id, Name, Type, Phone, Website FROM Account LIMIT 100"
|
94 |
+
result = sf_connection.query_all(query)
|
95 |
+
records = result['records']
|
96 |
+
|
97 |
+
if records:
|
98 |
+
df = pd.DataFrame(records)
|
99 |
+
if 'attributes' in df.columns:
|
100 |
+
df = df.drop('attributes', axis=1)
|
101 |
+
|
102 |
+
export_msg = f"\n📥 Export Results:\n"
|
103 |
+
export_msg += f"Records exported: {len(records)}\n"
|
104 |
+
export_msg += f"Fields: {', '.join(df.columns)}\n"
|
105 |
+
export_msg += f"Sample data:\n{df.head().to_string()}"
|
106 |
+
|
107 |
+
return connection_msg + export_msg
|
108 |
+
else:
|
109 |
+
return connection_msg + "\n❌ No records found to export"
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
return connection_msg + f"\n❌ Export error: {str(e)}"
|
113 |
|
114 |
+
else:
|
115 |
+
return connection_msg + "\n💡 Connection successful! Upload a file to insert/update data, or select 'export' to download data."
|
116 |
|
|
|
|
|
117 |
except Exception as e:
|
|
|
|
|
118 |
error_msg = str(e)
|
|
|
119 |
if "INVALID_LOGIN" in error_msg:
|
120 |
return "❌ Invalid credentials. Please check your username, password, and security token."
|
121 |
elif "API_DISABLED_FOR_ORG" in error_msg:
|
122 |
+
return "❌ API access is disabled. Contact your Salesforce admin."
|
123 |
elif "LOGIN_MUST_USE_SECURITY_TOKEN" in error_msg:
|
124 |
+
return "❌ Security token required. Append it to your password."
|
125 |
else:
|
126 |
return f"❌ Connection failed: {error_msg}"
|
127 |
|
128 |
+
# Create the interface
|
129 |
+
demo = gr.Interface(
|
130 |
+
fn=salesforce_data_loader,
|
131 |
+
inputs=[
|
132 |
+
gr.Textbox(label="Username", placeholder="[email protected]"),
|
133 |
+
gr.Textbox(label="Password", type="password"),
|
134 |
+
gr.Textbox(label="Security Token", type="password"),
|
135 |
+
gr.Checkbox(label="Sandbox Environment"),
|
136 |
+
gr.Dropdown(
|
137 |
+
label="Operation",
|
138 |
+
choices=["connect_only", "insert", "update", "export"],
|
139 |
+
value="connect_only"
|
140 |
+
),
|
141 |
+
gr.File(label="CSV/Excel File (optional)", file_types=[".csv", ".xlsx", ".xls"])
|
142 |
+
],
|
143 |
+
outputs=gr.Textbox(label="Results", lines=10),
|
144 |
+
title="🚀 Salesforce Data Loader",
|
145 |
+
description="""
|
146 |
+
**Simple Salesforce Data Management Tool**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
1. **Connect**: Enter your credentials and select 'connect_only'
|
149 |
+
2. **Upload**: Select 'insert' or 'update' and upload a CSV/Excel file
|
150 |
+
3. **Export**: Select 'export' to download Account data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
**Note**: For uploads, the tool auto-detects object type based on column names.
|
153 |
+
""",
|
154 |
+
examples=[
|
155 |
+
["[email protected]", "password123", "token123", False, "connect_only", None],
|
156 |
+
]
|
157 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|