Vishwas1's picture
Update app.py
bcdf3c7 verified
raw
history blame
11.9 kB
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Optional
from periodictable import elements
# ---------- helpers ----------
def to_float(x):
if x is None:
return np.nan
v = getattr(x, "nominal_value", x) # handles uncertainties.UFloat
try:
return float(v)
except Exception:
return np.nan
NUMERIC_PROPS = [
("mass", "Atomic mass (u)"),
("density", "Density (g/cm^3)"),
("electronegativity", "Pauling electronegativity"),
("boiling_point", "Boiling point (K)"),
("melting_point", "Melting point (K)"),
("vdw_radius", "van der Waals radius (pm)"),
("covalent_radius", "Covalent radius (pm)"),
]
CURATED_FACTS: Dict[str, List[str]] = {
"H": ["Lightest element; ~74% of visible matter is H in stars."],
"He": ["Inert and super light; cryogenics & balloons."],
"Li": ["Lithium-ion batteries power phones & EVs."],
"C": ["Diamond vs graphite = same element, different structure."],
"N": ["~78% of Earth's atmosphere is N₂."],
"O": ["~21% of air; essential for respiration."],
"Na": ["Reacts violently with water."],
"Mg": ["Bright white flame in flares."],
"Si": ["Semiconductor backbone."],
"Cl": ["Disinfectant; elemental Cl₂ is toxic."],
"Fe": ["Steel core; oxygen transport in blood (heme)."],
"Cu": ["Great conductor; forms green patina."],
"Ag": ["Highest electrical conductivity."],
"Au": ["Very unreactive; great for electronics/jewelry."],
"Hg": ["Liquid metal at room temp; toxic."],
"Pb": ["Dense, malleable; toxic—phase-out in fuels/paints."],
"U": ["Reactor fuel (U-235)."],
"Pu": ["Man-made in quantity; nuclear uses."],
"F": ["Most electronegative; extremely reactive."],
"Ne": ["Classic red-orange neon glow."],
"Xe": ["Used in bright flashes/HID lamps."],
}
GROUP_FACTS = {
"alkali": "Alkali metal: very reactive; forms +1 cations; reacts with water.",
"alkaline-earth": "Alkaline earth metal: reactive; forms +2 cations.",
"transition": "Transition metal: catalysts, colorful compounds, multiple oxidation states.",
"post-transition": "Post-transition metal: softer, lower melting than transition metals.",
"metalloid": "Metalloid: between metals and nonmetals; often semiconductors.",
"nonmetal": "Nonmetal: forms covalent compounds; huge biological roles.",
"halogen": "Halogen: very reactive nonmetals; −1 state; forms salts.",
"noble-gas": "Noble gas: inert, monatomic gases.",
"lanthanide": "Lanthanide: rare earths; magnets, lasers, phosphors.",
"actinide": "Actinide: radioactive; nuclear materials.",
}
def classify_category(el) -> str:
try:
if el.block == "s" and el.group == 1 and el.number != 1:
return "alkali"
if el.block == "s" and el.group == 2:
return "alkaline-earth"
if el.block == "d":
return "transition"
if el.block == "p" and el.group == 17:
return "halogen"
if el.block == "p" and el.group == 18:
return "noble-gas"
if el.block == "f" and 57 <= el.number <= 71:
return "lanthanide"
if el.block == "f" and 89 <= el.number <= 103:
return "actinide"
if el.block == "p" and not el.metallic:
return "nonmetal"
if el.block == "p" and el.metallic:
return "post-transition"
except Exception:
pass
return "post-transition" if getattr(el, "metallic", False) else "nonmetal"
def build_elements_df() -> pd.DataFrame:
rows = []
for Z in range(1, 119):
el = elements[Z]
if el is None:
continue
rows.append({
"Z": el.number,
"symbol": el.symbol,
"name": el.name.title(),
"period": getattr(el, "period", None),
"group": getattr(el, "group", None),
"block": getattr(el, "block", None),
"mass": to_float(getattr(el, "mass", None)),
"density": to_float(getattr(el, "density", None)),
"electronegativity": to_float(getattr(el, "electronegativity", None)),
"boiling_point": to_float(getattr(el, "boiling_point", None)),
"melting_point": to_float(getattr(el, "melting_point", None)),
"vdw_radius": to_float(getattr(el, "vdw_radius", None)),
"covalent_radius": to_float(getattr(el, "covalent_radius", None)),
"category": classify_category(el),
"is_radioactive": bool(getattr(el, "radioactive", False)),
})
return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)
DF = build_elements_df()
# ---------- hardcoded main-grid layout (periods 1–7, groups 1–18) ----------
# None = empty cell; numbers = atomic numbers
GRID = [
# P1
[1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2],
# P2
[3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10],
# P3
[11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18],
# P4
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
# P5
[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
# P6 (La shown at group 3)
[55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86],
# P7 (Ac shown at group 3)
[87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
]
# f-block lists we display separately (omit La & Ac because they’re in the main grid)
LAN = list(range(58, 72)) # Ce..Lu
ACT = list(range(90, 104)) # Th..Lr
# ---------- plotting ----------
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
fig, ax = plt.subplots()
ax.scatter(trend_df["Z"], trend_df[prop_key])
sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
if not sel.empty and not pd.isna(sel.values[0]):
ax.scatter([Z], [sel.values[0]], s=80)
ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
ax.set_xlabel("Atomic number (Z)")
ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
fig.tight_layout()
return fig
def plot_heatmap(property_key: str):
prop_label = dict(NUMERIC_PROPS)[property_key]
max_period, max_group = len(GRID), len(GRID[0])
grid_vals = np.full((max_period, max_group), np.nan, dtype=float)
for r in range(max_period):
for c in range(max_group):
z = GRID[r][c]
if z is None:
continue
val = DF.loc[DF["Z"] == z, property_key].values[0]
if not pd.isna(val):
grid_vals[r, c] = float(val)
fig, ax = plt.subplots()
im = ax.imshow(grid_vals, origin="upper", aspect="auto")
ax.set_xticks(range(max_group))
ax.set_xticklabels([str(i) for i in range(1, max_group + 1)])
ax.set_yticks(range(max_period))
ax.set_yticklabels([str(i) for i in range(1, max_period + 1)])
ax.set_xlabel("Group")
ax.set_ylabel("Period")
ax.set_title(f"Periodic heatmap: {prop_label}")
fig.colorbar(im, ax=ax, label=prop_label)
fig.tight_layout()
return fig
# ---------- callbacks ----------
def element_info(z_or_symbol: str):
try:
if z_or_symbol.isdigit():
Z = int(z_or_symbol)
_ = elements[Z]
else:
el = elements.symbol(z_or_symbol)
Z = el.number
except Exception:
return f"Unknown element: {z_or_symbol}", None, None
row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
symbol = row["symbol"]
facts = []
facts.extend(CURATED_FACTS.get(symbol, []))
facts.append(GROUP_FACTS.get(row["category"], None))
facts = [f for f in facts if f]
def show(v): # nicer NaN -> —
return v if (v is not None and not pd.isna(v)) else "—"
props_lines = [
f"{row['name']} ({symbol}), Z = {Z}",
f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
f"Group {row['group'] if row['group'] is not None else '—'}, "
f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
f"Atomic mass: {show(row['mass'])} u",
f"Density: {show(row['density'])} g/cm³",
f"Electronegativity: {show(row['electronegativity'])} (Pauling)",
f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K",
f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm",
f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
]
info_text = "\n".join(props_lines)
facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!"
prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
trend_df = DF[["Z", "symbol", prop_key]].dropna()
fig = plot_trend(trend_df, prop_key, Z, symbol)
return info_text, facts_text, fig
def handle_button_click(z: int):
return element_info(str(z))
def search_element(query: str):
query = (query or "").strip()
if not query:
return gr.update(), gr.update(), gr.update()
return element_info(query)
# ---------- UI ----------
with gr.Blocks(title="Interactive Periodic Table") as demo:
gr.Markdown("Click an element or search by symbol/name/atomic number.")
with gr.Row():
# Inspector
with gr.Column(scale=1):
gr.Markdown("### Inspector")
search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
info = gr.Textbox(label="Properties", lines=10, interactive=False)
facts = gr.Markdown("Select an element to see fun facts.")
trend = gr.Plot()
search.submit(search_element, inputs=[search], outputs=[info, facts, trend])
gr.Markdown("### Trend heatmap")
prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
heat = gr.Plot()
prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])
# Main table
with gr.Column(scale=2):
gr.Markdown("### Main Table")
with gr.Row():
for g in range(1, 19):
gr.Markdown(f"**{g}**")
for r in range(len(GRID)):
with gr.Row():
for c in range(len(GRID[0])):
z = GRID[r][c]
if z is None:
gr.Button("", interactive=False)
else:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
gr.Markdown("### f-block (lanthanides & actinides)")
with gr.Row():
for z in LAN:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
with gr.Row():
for z in ACT:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
if __name__ == "__main__":
demo.launch()