File size: 11,917 Bytes
f395cf7
 
 
 
bcdf3c7
f395cf7
 
bcdf3c7
1453284
 
 
bcdf3c7
1453284
 
 
bcdf3c7
1453284
f395cf7
 
 
 
 
 
 
 
 
 
 
bcdf3c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f395cf7
 
 
bcdf3c7
 
 
 
 
 
 
 
 
 
f395cf7
 
 
 
 
 
 
 
bcdf3c7
 
f395cf7
 
 
 
 
 
 
 
1453284
 
 
 
f395cf7
 
1453284
f395cf7
 
 
 
 
 
 
bcdf3c7
f395cf7
 
 
 
bcdf3c7
f395cf7
1453284
 
 
 
 
 
 
f395cf7
 
bcdf3c7
1453284
f395cf7
 
5542a6a
bcdf3c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f395cf7
bcdf3c7
 
 
f395cf7
bcdf3c7
f395cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdf3c7
 
 
 
f395cf7
 
 
5542a6a
f395cf7
 
 
 
bcdf3c7
 
 
 
f395cf7
 
 
 
 
 
 
bcdf3c7
f395cf7
 
 
 
 
 
 
 
 
 
 
5542a6a
 
f395cf7
 
 
5542a6a
f395cf7
 
bcdf3c7
 
 
f395cf7
 
5542a6a
 
 
bcdf3c7
 
 
 
 
f395cf7
 
 
 
 
5542a6a
 
f395cf7
 
 
 
 
 
 
5542a6a
f395cf7
 
 
 
bcdf3c7
f395cf7
bcdf3c7
f395cf7
 
bcdf3c7
5542a6a
 
 
 
 
933da9e
5542a6a
 
 
 
933da9e
5542a6a
 
 
bcdf3c7
f395cf7
 
 
 
 
bcdf3c7
f395cf7
bcdf3c7
f395cf7
 
 
 
5542a6a
f395cf7
5542a6a
 
f395cf7
 
 
 
5542a6a
bcdf3c7
 
f395cf7
 
5542a6a
bcdf3c7
 
f395cf7
 
 
1453284
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Optional
from periodictable import elements

# ---------- helpers ----------
def to_float(x):
    if x is None:
        return np.nan
    v = getattr(x, "nominal_value", x)  # handles uncertainties.UFloat
    try:
        return float(v)
    except Exception:
        return np.nan

NUMERIC_PROPS = [
    ("mass", "Atomic mass (u)"),
    ("density", "Density (g/cm^3)"),
    ("electronegativity", "Pauling electronegativity"),
    ("boiling_point", "Boiling point (K)"),
    ("melting_point", "Melting point (K)"),
    ("vdw_radius", "van der Waals radius (pm)"),
    ("covalent_radius", "Covalent radius (pm)"),
]

CURATED_FACTS: Dict[str, List[str]] = {
    "H": ["Lightest element; ~74% of visible matter is H in stars."],
    "He": ["Inert and super light; cryogenics & balloons."],
    "Li": ["Lithium-ion batteries power phones & EVs."],
    "C": ["Diamond vs graphite = same element, different structure."],
    "N": ["~78% of Earth's atmosphere is N₂."],
    "O": ["~21% of air; essential for respiration."],
    "Na": ["Reacts violently with water."],
    "Mg": ["Bright white flame in flares."],
    "Si": ["Semiconductor backbone."],
    "Cl": ["Disinfectant; elemental Cl₂ is toxic."],
    "Fe": ["Steel core; oxygen transport in blood (heme)."],
    "Cu": ["Great conductor; forms green patina."],
    "Ag": ["Highest electrical conductivity."],
    "Au": ["Very unreactive; great for electronics/jewelry."],
    "Hg": ["Liquid metal at room temp; toxic."],
    "Pb": ["Dense, malleable; toxic—phase-out in fuels/paints."],
    "U": ["Reactor fuel (U-235)."],
    "Pu": ["Man-made in quantity; nuclear uses."],
    "F": ["Most electronegative; extremely reactive."],
    "Ne": ["Classic red-orange neon glow."],
    "Xe": ["Used in bright flashes/HID lamps."],
}

GROUP_FACTS = {
    "alkali": "Alkali metal: very reactive; forms +1 cations; reacts with water.",
    "alkaline-earth": "Alkaline earth metal: reactive; forms +2 cations.",
    "transition": "Transition metal: catalysts, colorful compounds, multiple oxidation states.",
    "post-transition": "Post-transition metal: softer, lower melting than transition metals.",
    "metalloid": "Metalloid: between metals and nonmetals; often semiconductors.",
    "nonmetal": "Nonmetal: forms covalent compounds; huge biological roles.",
    "halogen": "Halogen: very reactive nonmetals; −1 state; forms salts.",
    "noble-gas": "Noble gas: inert, monatomic gases.",
    "lanthanide": "Lanthanide: rare earths; magnets, lasers, phosphors.",
    "actinide": "Actinide: radioactive; nuclear materials.",
}

def classify_category(el) -> str:
    try:
        if el.block == "s" and el.group == 1 and el.number != 1:
            return "alkali"
        if el.block == "s" and el.group == 2:
            return "alkaline-earth"
        if el.block == "d":
            return "transition"
        if el.block == "p" and el.group == 17:
            return "halogen"
        if el.block == "p" and el.group == 18:
            return "noble-gas"
        if el.block == "f" and 57 <= el.number <= 71:
            return "lanthanide"
        if el.block == "f" and 89 <= el.number <= 103:
            return "actinide"
        if el.block == "p" and not el.metallic:
            return "nonmetal"
        if el.block == "p" and el.metallic:
            return "post-transition"
    except Exception:
        pass
    return "post-transition" if getattr(el, "metallic", False) else "nonmetal"

def build_elements_df() -> pd.DataFrame:
    rows = []
    for Z in range(1, 119):
        el = elements[Z]
        if el is None:
            continue
        rows.append({
            "Z": el.number,
            "symbol": el.symbol,
            "name": el.name.title(),
            "period": getattr(el, "period", None),
            "group": getattr(el, "group", None),
            "block": getattr(el, "block", None),
            "mass": to_float(getattr(el, "mass", None)),
            "density": to_float(getattr(el, "density", None)),
            "electronegativity": to_float(getattr(el, "electronegativity", None)),
            "boiling_point": to_float(getattr(el, "boiling_point", None)),
            "melting_point": to_float(getattr(el, "melting_point", None)),
            "vdw_radius": to_float(getattr(el, "vdw_radius", None)),
            "covalent_radius": to_float(getattr(el, "covalent_radius", None)),
            "category": classify_category(el),
            "is_radioactive": bool(getattr(el, "radioactive", False)),
        })
    return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)

DF = build_elements_df()

# ---------- hardcoded main-grid layout (periods 1–7, groups 1–18) ----------
# None = empty cell; numbers = atomic numbers
GRID = [
    # P1
    [1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2],
    # P2
    [3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10],
    # P3
    [11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18],
    # P4
    [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
    # P5
    [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
    # P6 (La shown at group 3)
    [55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86],
    # P7 (Ac shown at group 3)
    [87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
]

# f-block lists we display separately (omit La & Ac because they’re in the main grid)
LAN = list(range(58, 72))   # Ce..Lu
ACT = list(range(90, 104))  # Th..Lr

# ---------- plotting ----------
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
    fig, ax = plt.subplots()
    ax.scatter(trend_df["Z"], trend_df[prop_key])
    sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
    if not sel.empty and not pd.isna(sel.values[0]):
        ax.scatter([Z], [sel.values[0]], s=80)
        ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
    ax.set_xlabel("Atomic number (Z)")
    ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
    ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
    fig.tight_layout()
    return fig

def plot_heatmap(property_key: str):
    prop_label = dict(NUMERIC_PROPS)[property_key]
    max_period, max_group = len(GRID), len(GRID[0])
    grid_vals = np.full((max_period, max_group), np.nan, dtype=float)
    for r in range(max_period):
        for c in range(max_group):
            z = GRID[r][c]
            if z is None:
                continue
            val = DF.loc[DF["Z"] == z, property_key].values[0]
            if not pd.isna(val):
                grid_vals[r, c] = float(val)
    fig, ax = plt.subplots()
    im = ax.imshow(grid_vals, origin="upper", aspect="auto")
    ax.set_xticks(range(max_group))
    ax.set_xticklabels([str(i) for i in range(1, max_group + 1)])
    ax.set_yticks(range(max_period))
    ax.set_yticklabels([str(i) for i in range(1, max_period + 1)])
    ax.set_xlabel("Group")
    ax.set_ylabel("Period")
    ax.set_title(f"Periodic heatmap: {prop_label}")
    fig.colorbar(im, ax=ax, label=prop_label)
    fig.tight_layout()
    return fig

# ---------- callbacks ----------
def element_info(z_or_symbol: str):
    try:
        if z_or_symbol.isdigit():
            Z = int(z_or_symbol)
            _ = elements[Z]
        else:
            el = elements.symbol(z_or_symbol)
            Z = el.number
    except Exception:
        return f"Unknown element: {z_or_symbol}", None, None

    row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
    symbol = row["symbol"]

    facts = []
    facts.extend(CURATED_FACTS.get(symbol, []))
    facts.append(GROUP_FACTS.get(row["category"], None))
    facts = [f for f in facts if f]

    def show(v):  # nicer NaN -> —
        return v if (v is not None and not pd.isna(v)) else "—"

    props_lines = [
        f"{row['name']} ({symbol}), Z = {Z}",
        f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
        f"Group {row['group'] if row['group'] is not None else '—'}, "
        f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
        f"Atomic mass: {show(row['mass'])} u",
        f"Density: {show(row['density'])} g/cm³",
        f"Electronegativity: {show(row['electronegativity'])} (Pauling)",
        f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K",
        f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm",
        f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
    ]
    info_text = "\n".join(props_lines)
    facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!"

    prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
    trend_df = DF[["Z", "symbol", prop_key]].dropna()
    fig = plot_trend(trend_df, prop_key, Z, symbol)
    return info_text, facts_text, fig

def handle_button_click(z: int):
    return element_info(str(z))

def search_element(query: str):
    query = (query or "").strip()
    if not query:
        return gr.update(), gr.update(), gr.update()
    return element_info(query)

# ---------- UI ----------
with gr.Blocks(title="Interactive Periodic Table") as demo:
    gr.Markdown("Click an element or search by symbol/name/atomic number.")

    with gr.Row():
        # Inspector
        with gr.Column(scale=1):
            gr.Markdown("### Inspector")
            search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
            info = gr.Textbox(label="Properties", lines=10, interactive=False)
            facts = gr.Markdown("Select an element to see fun facts.")
            trend = gr.Plot()
            search.submit(search_element, inputs=[search], outputs=[info, facts, trend])

            gr.Markdown("### Trend heatmap")
            prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
            heat = gr.Plot()
            prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
            demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])

        # Main table
        with gr.Column(scale=2):
            gr.Markdown("### Main Table")
            with gr.Row():
                for g in range(1, 19):
                    gr.Markdown(f"**{g}**")
            for r in range(len(GRID)):
                with gr.Row():
                    for c in range(len(GRID[0])):
                        z = GRID[r][c]
                        if z is None:
                            gr.Button("", interactive=False)
                        else:
                            sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                            btn = gr.Button(sym)
                            btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                                      outputs=[info, facts, trend])

            gr.Markdown("### f-block (lanthanides & actinides)")
            with gr.Row():
                for z in LAN:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                                         outputs=[info, facts, trend])
            with gr.Row():
                for z in ACT:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                                         outputs=[info, facts, trend])

if __name__ == "__main__":
    demo.launch()