Spaces:
Build error
Build error
File size: 11,917 Bytes
f395cf7 bcdf3c7 f395cf7 bcdf3c7 1453284 bcdf3c7 1453284 bcdf3c7 1453284 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 1453284 f395cf7 1453284 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 1453284 f395cf7 bcdf3c7 1453284 f395cf7 5542a6a bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 5542a6a f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 5542a6a f395cf7 5542a6a f395cf7 bcdf3c7 f395cf7 5542a6a bcdf3c7 f395cf7 5542a6a f395cf7 5542a6a f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 5542a6a 933da9e 5542a6a 933da9e 5542a6a bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a bcdf3c7 f395cf7 5542a6a bcdf3c7 f395cf7 1453284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Optional
from periodictable import elements
# ---------- helpers ----------
def to_float(x):
if x is None:
return np.nan
v = getattr(x, "nominal_value", x) # handles uncertainties.UFloat
try:
return float(v)
except Exception:
return np.nan
NUMERIC_PROPS = [
("mass", "Atomic mass (u)"),
("density", "Density (g/cm^3)"),
("electronegativity", "Pauling electronegativity"),
("boiling_point", "Boiling point (K)"),
("melting_point", "Melting point (K)"),
("vdw_radius", "van der Waals radius (pm)"),
("covalent_radius", "Covalent radius (pm)"),
]
CURATED_FACTS: Dict[str, List[str]] = {
"H": ["Lightest element; ~74% of visible matter is H in stars."],
"He": ["Inert and super light; cryogenics & balloons."],
"Li": ["Lithium-ion batteries power phones & EVs."],
"C": ["Diamond vs graphite = same element, different structure."],
"N": ["~78% of Earth's atmosphere is N₂."],
"O": ["~21% of air; essential for respiration."],
"Na": ["Reacts violently with water."],
"Mg": ["Bright white flame in flares."],
"Si": ["Semiconductor backbone."],
"Cl": ["Disinfectant; elemental Cl₂ is toxic."],
"Fe": ["Steel core; oxygen transport in blood (heme)."],
"Cu": ["Great conductor; forms green patina."],
"Ag": ["Highest electrical conductivity."],
"Au": ["Very unreactive; great for electronics/jewelry."],
"Hg": ["Liquid metal at room temp; toxic."],
"Pb": ["Dense, malleable; toxic—phase-out in fuels/paints."],
"U": ["Reactor fuel (U-235)."],
"Pu": ["Man-made in quantity; nuclear uses."],
"F": ["Most electronegative; extremely reactive."],
"Ne": ["Classic red-orange neon glow."],
"Xe": ["Used in bright flashes/HID lamps."],
}
GROUP_FACTS = {
"alkali": "Alkali metal: very reactive; forms +1 cations; reacts with water.",
"alkaline-earth": "Alkaline earth metal: reactive; forms +2 cations.",
"transition": "Transition metal: catalysts, colorful compounds, multiple oxidation states.",
"post-transition": "Post-transition metal: softer, lower melting than transition metals.",
"metalloid": "Metalloid: between metals and nonmetals; often semiconductors.",
"nonmetal": "Nonmetal: forms covalent compounds; huge biological roles.",
"halogen": "Halogen: very reactive nonmetals; −1 state; forms salts.",
"noble-gas": "Noble gas: inert, monatomic gases.",
"lanthanide": "Lanthanide: rare earths; magnets, lasers, phosphors.",
"actinide": "Actinide: radioactive; nuclear materials.",
}
def classify_category(el) -> str:
try:
if el.block == "s" and el.group == 1 and el.number != 1:
return "alkali"
if el.block == "s" and el.group == 2:
return "alkaline-earth"
if el.block == "d":
return "transition"
if el.block == "p" and el.group == 17:
return "halogen"
if el.block == "p" and el.group == 18:
return "noble-gas"
if el.block == "f" and 57 <= el.number <= 71:
return "lanthanide"
if el.block == "f" and 89 <= el.number <= 103:
return "actinide"
if el.block == "p" and not el.metallic:
return "nonmetal"
if el.block == "p" and el.metallic:
return "post-transition"
except Exception:
pass
return "post-transition" if getattr(el, "metallic", False) else "nonmetal"
def build_elements_df() -> pd.DataFrame:
rows = []
for Z in range(1, 119):
el = elements[Z]
if el is None:
continue
rows.append({
"Z": el.number,
"symbol": el.symbol,
"name": el.name.title(),
"period": getattr(el, "period", None),
"group": getattr(el, "group", None),
"block": getattr(el, "block", None),
"mass": to_float(getattr(el, "mass", None)),
"density": to_float(getattr(el, "density", None)),
"electronegativity": to_float(getattr(el, "electronegativity", None)),
"boiling_point": to_float(getattr(el, "boiling_point", None)),
"melting_point": to_float(getattr(el, "melting_point", None)),
"vdw_radius": to_float(getattr(el, "vdw_radius", None)),
"covalent_radius": to_float(getattr(el, "covalent_radius", None)),
"category": classify_category(el),
"is_radioactive": bool(getattr(el, "radioactive", False)),
})
return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)
DF = build_elements_df()
# ---------- hardcoded main-grid layout (periods 1–7, groups 1–18) ----------
# None = empty cell; numbers = atomic numbers
GRID = [
# P1
[1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2],
# P2
[3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10],
# P3
[11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18],
# P4
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
# P5
[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
# P6 (La shown at group 3)
[55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86],
# P7 (Ac shown at group 3)
[87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
]
# f-block lists we display separately (omit La & Ac because they’re in the main grid)
LAN = list(range(58, 72)) # Ce..Lu
ACT = list(range(90, 104)) # Th..Lr
# ---------- plotting ----------
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
fig, ax = plt.subplots()
ax.scatter(trend_df["Z"], trend_df[prop_key])
sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
if not sel.empty and not pd.isna(sel.values[0]):
ax.scatter([Z], [sel.values[0]], s=80)
ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
ax.set_xlabel("Atomic number (Z)")
ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
fig.tight_layout()
return fig
def plot_heatmap(property_key: str):
prop_label = dict(NUMERIC_PROPS)[property_key]
max_period, max_group = len(GRID), len(GRID[0])
grid_vals = np.full((max_period, max_group), np.nan, dtype=float)
for r in range(max_period):
for c in range(max_group):
z = GRID[r][c]
if z is None:
continue
val = DF.loc[DF["Z"] == z, property_key].values[0]
if not pd.isna(val):
grid_vals[r, c] = float(val)
fig, ax = plt.subplots()
im = ax.imshow(grid_vals, origin="upper", aspect="auto")
ax.set_xticks(range(max_group))
ax.set_xticklabels([str(i) for i in range(1, max_group + 1)])
ax.set_yticks(range(max_period))
ax.set_yticklabels([str(i) for i in range(1, max_period + 1)])
ax.set_xlabel("Group")
ax.set_ylabel("Period")
ax.set_title(f"Periodic heatmap: {prop_label}")
fig.colorbar(im, ax=ax, label=prop_label)
fig.tight_layout()
return fig
# ---------- callbacks ----------
def element_info(z_or_symbol: str):
try:
if z_or_symbol.isdigit():
Z = int(z_or_symbol)
_ = elements[Z]
else:
el = elements.symbol(z_or_symbol)
Z = el.number
except Exception:
return f"Unknown element: {z_or_symbol}", None, None
row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
symbol = row["symbol"]
facts = []
facts.extend(CURATED_FACTS.get(symbol, []))
facts.append(GROUP_FACTS.get(row["category"], None))
facts = [f for f in facts if f]
def show(v): # nicer NaN -> —
return v if (v is not None and not pd.isna(v)) else "—"
props_lines = [
f"{row['name']} ({symbol}), Z = {Z}",
f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
f"Group {row['group'] if row['group'] is not None else '—'}, "
f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
f"Atomic mass: {show(row['mass'])} u",
f"Density: {show(row['density'])} g/cm³",
f"Electronegativity: {show(row['electronegativity'])} (Pauling)",
f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K",
f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm",
f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
]
info_text = "\n".join(props_lines)
facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!"
prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
trend_df = DF[["Z", "symbol", prop_key]].dropna()
fig = plot_trend(trend_df, prop_key, Z, symbol)
return info_text, facts_text, fig
def handle_button_click(z: int):
return element_info(str(z))
def search_element(query: str):
query = (query or "").strip()
if not query:
return gr.update(), gr.update(), gr.update()
return element_info(query)
# ---------- UI ----------
with gr.Blocks(title="Interactive Periodic Table") as demo:
gr.Markdown("Click an element or search by symbol/name/atomic number.")
with gr.Row():
# Inspector
with gr.Column(scale=1):
gr.Markdown("### Inspector")
search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
info = gr.Textbox(label="Properties", lines=10, interactive=False)
facts = gr.Markdown("Select an element to see fun facts.")
trend = gr.Plot()
search.submit(search_element, inputs=[search], outputs=[info, facts, trend])
gr.Markdown("### Trend heatmap")
prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
heat = gr.Plot()
prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])
# Main table
with gr.Column(scale=2):
gr.Markdown("### Main Table")
with gr.Row():
for g in range(1, 19):
gr.Markdown(f"**{g}**")
for r in range(len(GRID)):
with gr.Row():
for c in range(len(GRID[0])):
z = GRID[r][c]
if z is None:
gr.Button("", interactive=False)
else:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
gr.Markdown("### f-block (lanthanides & actinides)")
with gr.Row():
for z in LAN:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
with gr.Row():
for z in ACT:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
if __name__ == "__main__":
demo.launch()
|