Spaces:
Build error
Build error
import math | |
from typing import Dict, List, Optional | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from periodictable import elements | |
# ----------------------------- | |
# Helpers | |
# ----------------------------- | |
def to_float(x): | |
"""Coerce periodictable numeric (incl. uncertainties) to plain float, else NaN.""" | |
if x is None: | |
return np.nan | |
try: | |
# uncertainties.UFloat has .nominal_value | |
v = getattr(x, "nominal_value", x) | |
return float(v) | |
except Exception: | |
try: | |
return float(x) | |
except Exception: | |
return np.nan | |
# ----------------------------- | |
# Data | |
# ----------------------------- | |
NUMERIC_PROPS = [ | |
("mass", "Atomic mass (u)"), | |
("density", "Density (g/cm^3)"), | |
("electronegativity", "Pauling electronegativity"), | |
("boiling_point", "Boiling point (K)"), | |
("melting_point", "Melting point (K)"), | |
("vdw_radius", "van der Waals radius (pm)"), | |
("covalent_radius", "Covalent radius (pm)"), | |
] | |
CURATED_FACTS: Dict[str, List[str]] = { | |
"H": ["Lightest element; ~74% of the visible universe by mass is hydrogen in stars."], | |
"He": ["Inert, used in cryogenics and balloons; second lightest element."], | |
"Li": ["Batteries MVP: lithium-ion cells power phones and EVs."], | |
"C": ["Backbone of life; diamond and graphite are pure carbon with wildly different properties."], | |
"N": ["~78% of Earth's atmosphere is nitrogen (mostly N₂)."], | |
"O": ["Essential for respiration; ~21% of Earth's atmosphere."], | |
"Na": ["Sodium metal reacts violently with water—handle only under oil or inert gas."], | |
"Mg": ["Burns with a bright white flame; used in flares and fireworks."], | |
"Al": ["Light and strong; forms a protective oxide layer that resists corrosion."], | |
"Si": ["Silicon is the basis of modern electronics—hello, semiconductors."], | |
"Cl": ["Powerful disinfectant; elemental chlorine is toxic, compounds are widely useful."], | |
"Ar": ["Argon is used to provide inert atmospheres for welding and 3D printing."], | |
"Fe": ["Core of steel; iron is essential in hemoglobin for oxygen transport."], | |
"Cu": ["Excellent electrical conductor; iconic blue-green patina (verdigris)."], | |
"Ag": ["Highest electrical conductivity of all metals; historically used as currency."], | |
"Au": ["Very unreactive ('noble'); prized for electronics and jewelry."], | |
"Hg": ["Only metal that's liquid at room temperature; toxic—use with care."], | |
"Pb": ["Dense and malleable; toxicity led to phase-out from gasoline and paints."], | |
"U": ["Radioactive; used as nuclear reactor fuel (U-235)."], | |
"Pu": ["Man-made in quantity; key in certain nuclear technologies."], | |
"F": ["Most electronegative element; extremely reactive."], | |
"Ne": ["Neon glows striking red-orange in discharge tubes—classic signs."], | |
"Xe": ["Xenon makes bright camera flashes and high-intensity lamps."], | |
} | |
GROUP_FACTS = { | |
"alkali": "Alkali metal: very reactive soft metal; forms +1 cations and reacts with water.", | |
"alkaline-earth": "Alkaline earth metal: reactive (less than Group 1); forms +2 cations.", | |
"transition": "Transition metal: often good catalysts, colorful compounds, multiple oxidation states.", | |
"post-transition": "Post-transition metal: softer metals with lower melting points than transition metals.", | |
"metalloid": "Metalloid: properties between metals and nonmetals; often semiconductors.", | |
"nonmetal": "Nonmetal: tends to form covalent compounds; wide range of roles in biology and materials.", | |
"halogen": "Halogen: very reactive nonmetals; form salts with metals and −1 oxidation state.", | |
"noble-gas": "Noble gas: chemically inert under most conditions; monatomic gases.", | |
"lanthanide": "Lanthanide: f-block rare earths; notable for magnets, lasers, and phosphors.", | |
"actinide": "Actinide: radioactive f-block; includes nuclear fuel materials.", | |
} | |
def classify_category(el) -> str: | |
try: | |
if el.block == "s" and el.group == 1 and el.number != 1: | |
return "alkali" | |
if el.block == "s" and el.group == 2: | |
return "alkaline-earth" | |
if el.block == "p" and el.group == 17: | |
return "halogen" | |
if el.block == "p" and el.group == 18: | |
return "noble-gas" | |
if el.block == "d": | |
return "transition" | |
if el.block == "f" and 57 <= el.number <= 71: | |
return "lanthanide" | |
if el.block == "f" and 89 <= el.number <= 103: | |
return "actinide" | |
if el.block == "p" and not el.metallic: | |
return "nonmetal" | |
if el.block == "p" and el.metallic: | |
return "post-transition" | |
except Exception: | |
pass | |
return "post-transition" if getattr(el, "metallic", False) else "nonmetal" | |
def build_elements_df() -> pd.DataFrame: | |
rows = [] | |
for Z in range(1, 119): | |
el = elements[Z] | |
if el is None: | |
continue | |
data = { | |
"Z": el.number, | |
"symbol": el.symbol, | |
"name": el.name.title(), | |
"period": getattr(el, "period", None), | |
"group": getattr(el, "group", None), # may be None for many | |
"block": getattr(el, "block", None), | |
"mass": to_float(getattr(el, "mass", None)), | |
"density": to_float(getattr(el, "density", None)), | |
"electronegativity": to_float(getattr(el, "electronegativity", None)), | |
"boiling_point": to_float(getattr(el, "boiling_point", None)), | |
"melting_point": to_float(getattr(el, "melting_point", None)), | |
"vdw_radius": to_float(getattr(el, "vdw_radius", None)), | |
"covalent_radius": to_float(getattr(el, "covalent_radius", None)), | |
"category": classify_category(el), | |
"is_radioactive": bool(getattr(el, "radioactive", False)), | |
} | |
rows.append(data) | |
return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True) | |
DF = build_elements_df() | |
# ----------------------------- | |
# Build a robust grid (no reliance on group from the lib) | |
# Rules: s->groups 1-2, d->3..12, p->13..18; period 1 special (H at 1, He at 18) | |
# f-block shown separately. | |
# ----------------------------- | |
MAX_GROUP = 18 | |
MAX_PERIOD = 7 | |
GRID: List[List[Optional[int]]] = [[None for _ in range(MAX_GROUP)] for _ in range(MAX_PERIOD)] | |
for period in range(1, MAX_PERIOD + 1): | |
rows = DF[DF["period"] == period].sort_values("Z") | |
s = rows[rows["block"] == "s"]["Z"].tolist() | |
d = rows[rows["block"] == "d"]["Z"].tolist() | |
p = rows[rows["block"] == "p"]["Z"].tolist() | |
# Period 1 special case | |
if period == 1: | |
# Expect H then He | |
if len(s) >= 1: | |
GRID[0][0] = int(s[0]) # H -> group 1 | |
if len(p) >= 1: | |
GRID[0][17] = int(p[-1]) # He -> group 18 | |
continue | |
# s-block (usually 2) | |
if len(s) >= 1: | |
GRID[period - 1][0] = int(s[0]) # group 1 | |
if len(s) >= 2: | |
GRID[period - 1][1] = int(s[1]) # group 2 | |
# d-block (10 wide), only in periods >= 4 | |
for i, z in enumerate(d): | |
if i < 10: | |
GRID[period - 1][2 + i] = int(z) # groups 3..12 | |
# p-block (6 wide) | |
for i, z in enumerate(p[-6:]): # last 6 p-block in order | |
GRID[period - 1][12 + i] = int(z) # groups 13..18 | |
# f-block lists (lanthanides/actinides) | |
LAN = [int(z) for z in DF["Z"] if 57 <= int(z) <= 71] | |
ACT = [int(z) for z in DF["Z"] if 89 <= int(z) <= 103] | |
# ----------------------------- | |
# Plotting (Matplotlib -> gr.Plot) | |
# ----------------------------- | |
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str): | |
fig, ax = plt.subplots() | |
ax.scatter(trend_df["Z"], trend_df[prop_key]) | |
sel = trend_df.loc[trend_df["Z"] == Z, prop_key] | |
if not sel.empty and not pd.isna(sel.values[0]): | |
ax.scatter([Z], [sel.values[0]], s=80) | |
ax.text(Z, sel.values[0], symbol, ha="center", va="bottom") | |
ax.set_xlabel("Atomic number (Z)") | |
ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key]) | |
ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table") | |
fig.tight_layout() | |
return fig | |
def plot_heatmap(property_key: str): | |
prop_label = dict(NUMERIC_PROPS)[property_key] | |
grid_vals = np.full((MAX_PERIOD, MAX_GROUP), np.nan, dtype=float) | |
for r in range(MAX_PERIOD): | |
for c in range(MAX_GROUP): | |
z = GRID[r][c] | |
if z is None: | |
continue | |
val = DF.loc[DF["Z"] == z, property_key].values[0] | |
if not pd.isna(val): | |
grid_vals[r, c] = float(val) | |
fig, ax = plt.subplots() | |
im = ax.imshow(grid_vals, origin="upper", aspect="auto") | |
ax.set_xticks(range(MAX_GROUP)) | |
ax.set_xticklabels([str(i) for i in range(1, MAX_GROUP + 1)]) | |
ax.set_yticks(range(MAX_PERIOD)) | |
ax.set_yticklabels([str(i) for i in range(1, MAX_PERIOD + 1)]) | |
ax.set_xlabel("Group") | |
ax.set_ylabel("Period") | |
ax.set_title(f"Periodic heatmap: {prop_label}") | |
fig.colorbar(im, ax=ax, label=prop_label) | |
fig.tight_layout() | |
return fig | |
# ----------------------------- | |
# Callbacks | |
# ----------------------------- | |
def element_info(z_or_symbol: str): | |
try: | |
if z_or_symbol.isdigit(): | |
Z = int(z_or_symbol) | |
_ = elements[Z] | |
else: | |
el = elements.symbol(z_or_symbol) | |
Z = el.number | |
except Exception: | |
return f"Unknown element: {z_or_symbol}", None, None | |
row = DF.loc[DF["Z"] == Z].iloc[0].to_dict() | |
symbol = row["symbol"] | |
facts = [] | |
facts.extend(CURATED_FACTS.get(symbol, [])) | |
facts.append(GROUP_FACTS.get(row["category"], None)) | |
facts = [f for f in facts if f] | |
props_lines = [ | |
f"{row['name']} ({symbol}), Z = {Z}", | |
f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, " | |
f"Group {row['group'] if row['group'] is not None else '—'}, " | |
f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}", | |
f"Atomic mass: {row['mass'] if not pd.isna(row['mass']) else '—'} u", | |
f"Density: {row['density'] if not pd.isna(row['density']) else '—'} g/cm³", | |
f"Electronegativity: {row['electronegativity'] if not pd.isna(row['electronegativity']) else '—'} (Pauling)", | |
f"Melting point: {row['melting_point'] if not pd.isna(row['melting_point']) else '—'} K | " | |
f"Boiling point: {row['boiling_point'] if not pd.isna(row['boiling_point']) else '—'} K", | |
f"vdW radius: {row['vdw_radius'] if not pd.isna(row['vdw_radius']) else '—'} pm | " | |
f"Covalent radius: {row['covalent_radius'] if not pd.isna(row['covalent_radius']) else '—'} pm", | |
f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}", | |
] | |
info_text = "\n".join(props_lines) | |
facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!" | |
prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass" | |
trend_df = DF[["Z", "symbol", prop_key]].dropna() | |
fig = plot_trend(trend_df, prop_key, Z, symbol) | |
return info_text, facts_text, fig | |
def handle_button_click(z: int): | |
return element_info(str(z)) | |
def search_element(query: str): | |
query = (query or "").strip() | |
if not query: | |
return gr.update(), gr.update(), gr.update() | |
return element_info(query) | |
# ----------------------------- | |
# UI (Gradio 4.29.0 compatible) | |
# ----------------------------- | |
with gr.Blocks(title="Interactive Periodic Table") as demo: | |
gr.Markdown("# 🧪 Interactive Periodic Table\nClick an element or search by symbol/name/atomic number.") | |
with gr.Row(): | |
# Inspector first so buttons can target these outputs | |
with gr.Column(scale=1): | |
gr.Markdown("### Inspector") | |
search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79") | |
info = gr.Textbox(label="Properties", lines=10, interactive=False) | |
facts = gr.Markdown("Select an element to see fun facts.") | |
trend = gr.Plot() | |
search.submit(search_element, inputs=[search], outputs=[info, facts, trend]) | |
gr.Markdown("### Trend heatmap") | |
prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property") | |
heat = gr.Plot() | |
prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat]) | |
demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat]) | |
with gr.Column(scale=2): | |
gr.Markdown("### Main Table") | |
# Group headers (1..18) | |
with gr.Row(): | |
for g in range(1, 19): | |
gr.Markdown(f"**{g}**") | |
# Grid of element buttons | |
for r in range(MAX_PERIOD): | |
with gr.Row(): | |
for c in range(MAX_GROUP): | |
z = GRID[r][c] | |
if z is None: | |
gr.Button("", interactive=False) | |
else: | |
sym = DF.loc[DF["Z"] == z, "symbol"].values[0] | |
btn = gr.Button(sym) | |
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)], | |
outputs=[info, facts, trend]) | |
gr.Markdown("### f-block (lanthanides & actinides)") | |
with gr.Row(): | |
for z in LAN: | |
sym = DF.loc[DF["Z"] == z, "symbol"].values[0] | |
btn = gr.Button(sym) | |
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)], | |
outputs=[info, facts, trend]) | |
with gr.Row(): | |
for z in ACT: | |
sym = DF.loc[DF["Z"] == z, "symbol"].values[0] | |
btn = gr.Button(sym) | |
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)], | |
outputs=[info, facts, trend]) | |
if __name__ == "__main__": | |
demo.launch() | |