File size: 14,164 Bytes
f395cf7
 
 
 
 
 
 
 
 
1453284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5542a6a
 
 
f395cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453284
 
f395cf7
 
 
 
1453284
 
 
 
f395cf7
 
1453284
f395cf7
 
 
 
 
 
 
 
 
 
 
 
1453284
f395cf7
1453284
 
 
 
 
 
 
f395cf7
 
 
 
1453284
f395cf7
 
5542a6a
 
1453284
 
 
5542a6a
f395cf7
 
 
5542a6a
1453284
 
 
 
 
 
 
 
 
 
 
 
f395cf7
1453284
 
 
 
 
 
 
 
 
 
 
 
f395cf7
1453284
5542a6a
 
f395cf7
5542a6a
1453284
5542a6a
f395cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5542a6a
f395cf7
 
 
 
 
5542a6a
f395cf7
5542a6a
f395cf7
 
 
 
 
 
 
5542a6a
 
 
f395cf7
 
 
 
 
 
 
 
 
 
 
5542a6a
 
f395cf7
 
 
5542a6a
f395cf7
 
 
 
5542a6a
 
 
1453284
 
 
 
 
 
 
f395cf7
 
 
 
 
5542a6a
 
f395cf7
 
 
 
 
 
 
 
5542a6a
f395cf7
 
 
 
5542a6a
1453284
5542a6a
f395cf7
 
 
 
933da9e
5542a6a
 
 
 
 
933da9e
5542a6a
 
 
 
933da9e
5542a6a
 
 
f395cf7
 
1453284
f395cf7
 
 
1453284
f395cf7
 
 
 
 
 
 
5542a6a
f395cf7
5542a6a
 
f395cf7
 
 
 
5542a6a
f395cf7
5542a6a
 
f395cf7
 
5542a6a
f395cf7
5542a6a
 
f395cf7
 
 
1453284
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import math
from typing import Dict, List, Optional

import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from periodictable import elements

# -----------------------------
# Helpers
# -----------------------------
def to_float(x):
    """Coerce periodictable numeric (incl. uncertainties) to plain float, else NaN."""
    if x is None:
        return np.nan
    try:
        # uncertainties.UFloat has .nominal_value
        v = getattr(x, "nominal_value", x)
        return float(v)
    except Exception:
        try:
            return float(x)
        except Exception:
            return np.nan

# -----------------------------
# Data
# -----------------------------
NUMERIC_PROPS = [
    ("mass", "Atomic mass (u)"),
    ("density", "Density (g/cm^3)"),
    ("electronegativity", "Pauling electronegativity"),
    ("boiling_point", "Boiling point (K)"),
    ("melting_point", "Melting point (K)"),
    ("vdw_radius", "van der Waals radius (pm)"),
    ("covalent_radius", "Covalent radius (pm)"),
]

CURATED_FACTS: Dict[str, List[str]] = {
    "H": ["Lightest element; ~74% of the visible universe by mass is hydrogen in stars."],
    "He": ["Inert, used in cryogenics and balloons; second lightest element."],
    "Li": ["Batteries MVP: lithium-ion cells power phones and EVs."],
    "C": ["Backbone of life; diamond and graphite are pure carbon with wildly different properties."],
    "N": ["~78% of Earth's atmosphere is nitrogen (mostly N₂)."],
    "O": ["Essential for respiration; ~21% of Earth's atmosphere."],
    "Na": ["Sodium metal reacts violently with water—handle only under oil or inert gas."],
    "Mg": ["Burns with a bright white flame; used in flares and fireworks."],
    "Al": ["Light and strong; forms a protective oxide layer that resists corrosion."],
    "Si": ["Silicon is the basis of modern electronics—hello, semiconductors."],
    "Cl": ["Powerful disinfectant; elemental chlorine is toxic, compounds are widely useful."],
    "Ar": ["Argon is used to provide inert atmospheres for welding and 3D printing."],
    "Fe": ["Core of steel; iron is essential in hemoglobin for oxygen transport."],
    "Cu": ["Excellent electrical conductor; iconic blue-green patina (verdigris)."],
    "Ag": ["Highest electrical conductivity of all metals; historically used as currency."],
    "Au": ["Very unreactive ('noble'); prized for electronics and jewelry."],
    "Hg": ["Only metal that's liquid at room temperature; toxic—use with care."],
    "Pb": ["Dense and malleable; toxicity led to phase-out from gasoline and paints."],
    "U": ["Radioactive; used as nuclear reactor fuel (U-235)."],
    "Pu": ["Man-made in quantity; key in certain nuclear technologies."],
    "F": ["Most electronegative element; extremely reactive."],
    "Ne": ["Neon glows striking red-orange in discharge tubes—classic signs."],
    "Xe": ["Xenon makes bright camera flashes and high-intensity lamps."],
}

GROUP_FACTS = {
    "alkali": "Alkali metal: very reactive soft metal; forms +1 cations and reacts with water.",
    "alkaline-earth": "Alkaline earth metal: reactive (less than Group 1); forms +2 cations.",
    "transition": "Transition metal: often good catalysts, colorful compounds, multiple oxidation states.",
    "post-transition": "Post-transition metal: softer metals with lower melting points than transition metals.",
    "metalloid": "Metalloid: properties between metals and nonmetals; often semiconductors.",
    "nonmetal": "Nonmetal: tends to form covalent compounds; wide range of roles in biology and materials.",
    "halogen": "Halogen: very reactive nonmetals; form salts with metals and −1 oxidation state.",
    "noble-gas": "Noble gas: chemically inert under most conditions; monatomic gases.",
    "lanthanide": "Lanthanide: f-block rare earths; notable for magnets, lasers, and phosphors.",
    "actinide": "Actinide: radioactive f-block; includes nuclear fuel materials.",
}

def classify_category(el) -> str:
    try:
        if el.block == "s" and el.group == 1 and el.number != 1:
            return "alkali"
        if el.block == "s" and el.group == 2:
            return "alkaline-earth"
        if el.block == "p" and el.group == 17:
            return "halogen"
        if el.block == "p" and el.group == 18:
            return "noble-gas"
        if el.block == "d":
            return "transition"
        if el.block == "f" and 57 <= el.number <= 71:
            return "lanthanide"
        if el.block == "f" and 89 <= el.number <= 103:
            return "actinide"
        if el.block == "p" and not el.metallic:
            return "nonmetal"
        if el.block == "p" and el.metallic:
            return "post-transition"
    except Exception:
        pass
    return "post-transition" if getattr(el, "metallic", False) else "nonmetal"

def build_elements_df() -> pd.DataFrame:
    rows = []
    for Z in range(1, 119):
        el = elements[Z]
        if el is None:
            continue
        data = {
            "Z": el.number,
            "symbol": el.symbol,
            "name": el.name.title(),
            "period": getattr(el, "period", None),
            "group": getattr(el, "group", None),  # may be None for many
            "block": getattr(el, "block", None),
            "mass": to_float(getattr(el, "mass", None)),
            "density": to_float(getattr(el, "density", None)),
            "electronegativity": to_float(getattr(el, "electronegativity", None)),
            "boiling_point": to_float(getattr(el, "boiling_point", None)),
            "melting_point": to_float(getattr(el, "melting_point", None)),
            "vdw_radius": to_float(getattr(el, "vdw_radius", None)),
            "covalent_radius": to_float(getattr(el, "covalent_radius", None)),
            "category": classify_category(el),
            "is_radioactive": bool(getattr(el, "radioactive", False)),
        }
        rows.append(data)
    return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)

DF = build_elements_df()

# -----------------------------
# Build a robust grid (no reliance on group from the lib)
# Rules: s->groups 1-2, d->3..12, p->13..18; period 1 special (H at 1, He at 18)
# f-block shown separately.
# -----------------------------
MAX_GROUP = 18
MAX_PERIOD = 7
GRID: List[List[Optional[int]]] = [[None for _ in range(MAX_GROUP)] for _ in range(MAX_PERIOD)]

for period in range(1, MAX_PERIOD + 1):
    rows = DF[DF["period"] == period].sort_values("Z")
    s = rows[rows["block"] == "s"]["Z"].tolist()
    d = rows[rows["block"] == "d"]["Z"].tolist()
    p = rows[rows["block"] == "p"]["Z"].tolist()
    # Period 1 special case
    if period == 1:
        # Expect H then He
        if len(s) >= 1:
            GRID[0][0] = int(s[0])  # H -> group 1
        if len(p) >= 1:
            GRID[0][17] = int(p[-1])  # He -> group 18
        continue
    # s-block (usually 2)
    if len(s) >= 1:
        GRID[period - 1][0] = int(s[0])     # group 1
    if len(s) >= 2:
        GRID[period - 1][1] = int(s[1])     # group 2
    # d-block (10 wide), only in periods >= 4
    for i, z in enumerate(d):
        if i < 10:
            GRID[period - 1][2 + i] = int(z)  # groups 3..12
    # p-block (6 wide)
    for i, z in enumerate(p[-6:]):  # last 6 p-block in order
        GRID[period - 1][12 + i] = int(z)     # groups 13..18

# f-block lists (lanthanides/actinides)
LAN = [int(z) for z in DF["Z"] if 57 <= int(z) <= 71]
ACT = [int(z) for z in DF["Z"] if 89 <= int(z) <= 103]

# -----------------------------
# Plotting (Matplotlib -> gr.Plot)
# -----------------------------
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
    fig, ax = plt.subplots()
    ax.scatter(trend_df["Z"], trend_df[prop_key])
    sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
    if not sel.empty and not pd.isna(sel.values[0]):
        ax.scatter([Z], [sel.values[0]], s=80)
        ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
    ax.set_xlabel("Atomic number (Z)")
    ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
    ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
    fig.tight_layout()
    return fig

def plot_heatmap(property_key: str):
    prop_label = dict(NUMERIC_PROPS)[property_key]
    grid_vals = np.full((MAX_PERIOD, MAX_GROUP), np.nan, dtype=float)
    for r in range(MAX_PERIOD):
        for c in range(MAX_GROUP):
            z = GRID[r][c]
            if z is None:
                continue
            val = DF.loc[DF["Z"] == z, property_key].values[0]
            if not pd.isna(val):
                grid_vals[r, c] = float(val)
    fig, ax = plt.subplots()
    im = ax.imshow(grid_vals, origin="upper", aspect="auto")
    ax.set_xticks(range(MAX_GROUP))
    ax.set_xticklabels([str(i) for i in range(1, MAX_GROUP + 1)])
    ax.set_yticks(range(MAX_PERIOD))
    ax.set_yticklabels([str(i) for i in range(1, MAX_PERIOD + 1)])
    ax.set_xlabel("Group")
    ax.set_ylabel("Period")
    ax.set_title(f"Periodic heatmap: {prop_label}")
    fig.colorbar(im, ax=ax, label=prop_label)
    fig.tight_layout()
    return fig

# -----------------------------
# Callbacks
# -----------------------------
def element_info(z_or_symbol: str):
    try:
        if z_or_symbol.isdigit():
            Z = int(z_or_symbol)
            _ = elements[Z]
        else:
            el = elements.symbol(z_or_symbol)
            Z = el.number
    except Exception:
        return f"Unknown element: {z_or_symbol}", None, None

    row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
    symbol = row["symbol"]

    facts = []
    facts.extend(CURATED_FACTS.get(symbol, []))
    facts.append(GROUP_FACTS.get(row["category"], None))
    facts = [f for f in facts if f]

    props_lines = [
        f"{row['name']} ({symbol}), Z = {Z}",
        f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
        f"Group {row['group'] if row['group'] is not None else '—'}, "
        f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
        f"Atomic mass: {row['mass'] if not pd.isna(row['mass']) else '—'} u",
        f"Density: {row['density'] if not pd.isna(row['density']) else '—'} g/cm³",
        f"Electronegativity: {row['electronegativity'] if not pd.isna(row['electronegativity']) else '—'} (Pauling)",
        f"Melting point: {row['melting_point'] if not pd.isna(row['melting_point']) else '—'} K | "
        f"Boiling point: {row['boiling_point'] if not pd.isna(row['boiling_point']) else '—'} K",
        f"vdW radius: {row['vdw_radius'] if not pd.isna(row['vdw_radius']) else '—'} pm | "
        f"Covalent radius: {row['covalent_radius'] if not pd.isna(row['covalent_radius']) else '—'} pm",
        f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
    ]
    info_text = "\n".join(props_lines)
    facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!"

    prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
    trend_df = DF[["Z", "symbol", prop_key]].dropna()
    fig = plot_trend(trend_df, prop_key, Z, symbol)

    return info_text, facts_text, fig

def handle_button_click(z: int):
    return element_info(str(z))

def search_element(query: str):
    query = (query or "").strip()
    if not query:
        return gr.update(), gr.update(), gr.update()
    return element_info(query)

# -----------------------------
# UI (Gradio 4.29.0 compatible)
# -----------------------------
with gr.Blocks(title="Interactive Periodic Table") as demo:
    gr.Markdown("# 🧪 Interactive Periodic Table\nClick an element or search by symbol/name/atomic number.")

    with gr.Row():
        # Inspector first so buttons can target these outputs
        with gr.Column(scale=1):
            gr.Markdown("### Inspector")
            search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
            info = gr.Textbox(label="Properties", lines=10, interactive=False)
            facts = gr.Markdown("Select an element to see fun facts.")
            trend = gr.Plot()
            search.submit(search_element, inputs=[search], outputs=[info, facts, trend])

            gr.Markdown("### Trend heatmap")
            prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
            heat = gr.Plot()
            prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
            demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])

        with gr.Column(scale=2):
            gr.Markdown("### Main Table")
            # Group headers (1..18)
            with gr.Row():
                for g in range(1, 19):
                    gr.Markdown(f"**{g}**")
            # Grid of element buttons
            for r in range(MAX_PERIOD):
                with gr.Row():
                    for c in range(MAX_GROUP):
                        z = GRID[r][c]
                        if z is None:
                            gr.Button("", interactive=False)
                        else:
                            sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                            btn = gr.Button(sym)
                            btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                                      outputs=[info, facts, trend])

            gr.Markdown("### f-block (lanthanides & actinides)")
            with gr.Row():
                for z in LAN:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    btn = gr.Button(sym)
                    btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                              outputs=[info, facts, trend])
            with gr.Row():
                for z in ACT:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    btn = gr.Button(sym)
                    btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
                              outputs=[info, facts, trend])

if __name__ == "__main__":
    demo.launch()