Spaces:
Build error
Build error
File size: 14,164 Bytes
f395cf7 1453284 5542a6a f395cf7 1453284 f395cf7 1453284 f395cf7 1453284 f395cf7 1453284 f395cf7 1453284 f395cf7 1453284 f395cf7 5542a6a 1453284 5542a6a f395cf7 5542a6a 1453284 f395cf7 1453284 f395cf7 1453284 5542a6a f395cf7 5542a6a 1453284 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a 1453284 f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a 1453284 5542a6a f395cf7 933da9e 5542a6a 933da9e 5542a6a 933da9e 5542a6a f395cf7 1453284 f395cf7 1453284 f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 5542a6a f395cf7 1453284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import math
from typing import Dict, List, Optional
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from periodictable import elements
# -----------------------------
# Helpers
# -----------------------------
def to_float(x):
"""Coerce periodictable numeric (incl. uncertainties) to plain float, else NaN."""
if x is None:
return np.nan
try:
# uncertainties.UFloat has .nominal_value
v = getattr(x, "nominal_value", x)
return float(v)
except Exception:
try:
return float(x)
except Exception:
return np.nan
# -----------------------------
# Data
# -----------------------------
NUMERIC_PROPS = [
("mass", "Atomic mass (u)"),
("density", "Density (g/cm^3)"),
("electronegativity", "Pauling electronegativity"),
("boiling_point", "Boiling point (K)"),
("melting_point", "Melting point (K)"),
("vdw_radius", "van der Waals radius (pm)"),
("covalent_radius", "Covalent radius (pm)"),
]
CURATED_FACTS: Dict[str, List[str]] = {
"H": ["Lightest element; ~74% of the visible universe by mass is hydrogen in stars."],
"He": ["Inert, used in cryogenics and balloons; second lightest element."],
"Li": ["Batteries MVP: lithium-ion cells power phones and EVs."],
"C": ["Backbone of life; diamond and graphite are pure carbon with wildly different properties."],
"N": ["~78% of Earth's atmosphere is nitrogen (mostly N₂)."],
"O": ["Essential for respiration; ~21% of Earth's atmosphere."],
"Na": ["Sodium metal reacts violently with water—handle only under oil or inert gas."],
"Mg": ["Burns with a bright white flame; used in flares and fireworks."],
"Al": ["Light and strong; forms a protective oxide layer that resists corrosion."],
"Si": ["Silicon is the basis of modern electronics—hello, semiconductors."],
"Cl": ["Powerful disinfectant; elemental chlorine is toxic, compounds are widely useful."],
"Ar": ["Argon is used to provide inert atmospheres for welding and 3D printing."],
"Fe": ["Core of steel; iron is essential in hemoglobin for oxygen transport."],
"Cu": ["Excellent electrical conductor; iconic blue-green patina (verdigris)."],
"Ag": ["Highest electrical conductivity of all metals; historically used as currency."],
"Au": ["Very unreactive ('noble'); prized for electronics and jewelry."],
"Hg": ["Only metal that's liquid at room temperature; toxic—use with care."],
"Pb": ["Dense and malleable; toxicity led to phase-out from gasoline and paints."],
"U": ["Radioactive; used as nuclear reactor fuel (U-235)."],
"Pu": ["Man-made in quantity; key in certain nuclear technologies."],
"F": ["Most electronegative element; extremely reactive."],
"Ne": ["Neon glows striking red-orange in discharge tubes—classic signs."],
"Xe": ["Xenon makes bright camera flashes and high-intensity lamps."],
}
GROUP_FACTS = {
"alkali": "Alkali metal: very reactive soft metal; forms +1 cations and reacts with water.",
"alkaline-earth": "Alkaline earth metal: reactive (less than Group 1); forms +2 cations.",
"transition": "Transition metal: often good catalysts, colorful compounds, multiple oxidation states.",
"post-transition": "Post-transition metal: softer metals with lower melting points than transition metals.",
"metalloid": "Metalloid: properties between metals and nonmetals; often semiconductors.",
"nonmetal": "Nonmetal: tends to form covalent compounds; wide range of roles in biology and materials.",
"halogen": "Halogen: very reactive nonmetals; form salts with metals and −1 oxidation state.",
"noble-gas": "Noble gas: chemically inert under most conditions; monatomic gases.",
"lanthanide": "Lanthanide: f-block rare earths; notable for magnets, lasers, and phosphors.",
"actinide": "Actinide: radioactive f-block; includes nuclear fuel materials.",
}
def classify_category(el) -> str:
try:
if el.block == "s" and el.group == 1 and el.number != 1:
return "alkali"
if el.block == "s" and el.group == 2:
return "alkaline-earth"
if el.block == "p" and el.group == 17:
return "halogen"
if el.block == "p" and el.group == 18:
return "noble-gas"
if el.block == "d":
return "transition"
if el.block == "f" and 57 <= el.number <= 71:
return "lanthanide"
if el.block == "f" and 89 <= el.number <= 103:
return "actinide"
if el.block == "p" and not el.metallic:
return "nonmetal"
if el.block == "p" and el.metallic:
return "post-transition"
except Exception:
pass
return "post-transition" if getattr(el, "metallic", False) else "nonmetal"
def build_elements_df() -> pd.DataFrame:
rows = []
for Z in range(1, 119):
el = elements[Z]
if el is None:
continue
data = {
"Z": el.number,
"symbol": el.symbol,
"name": el.name.title(),
"period": getattr(el, "period", None),
"group": getattr(el, "group", None), # may be None for many
"block": getattr(el, "block", None),
"mass": to_float(getattr(el, "mass", None)),
"density": to_float(getattr(el, "density", None)),
"electronegativity": to_float(getattr(el, "electronegativity", None)),
"boiling_point": to_float(getattr(el, "boiling_point", None)),
"melting_point": to_float(getattr(el, "melting_point", None)),
"vdw_radius": to_float(getattr(el, "vdw_radius", None)),
"covalent_radius": to_float(getattr(el, "covalent_radius", None)),
"category": classify_category(el),
"is_radioactive": bool(getattr(el, "radioactive", False)),
}
rows.append(data)
return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)
DF = build_elements_df()
# -----------------------------
# Build a robust grid (no reliance on group from the lib)
# Rules: s->groups 1-2, d->3..12, p->13..18; period 1 special (H at 1, He at 18)
# f-block shown separately.
# -----------------------------
MAX_GROUP = 18
MAX_PERIOD = 7
GRID: List[List[Optional[int]]] = [[None for _ in range(MAX_GROUP)] for _ in range(MAX_PERIOD)]
for period in range(1, MAX_PERIOD + 1):
rows = DF[DF["period"] == period].sort_values("Z")
s = rows[rows["block"] == "s"]["Z"].tolist()
d = rows[rows["block"] == "d"]["Z"].tolist()
p = rows[rows["block"] == "p"]["Z"].tolist()
# Period 1 special case
if period == 1:
# Expect H then He
if len(s) >= 1:
GRID[0][0] = int(s[0]) # H -> group 1
if len(p) >= 1:
GRID[0][17] = int(p[-1]) # He -> group 18
continue
# s-block (usually 2)
if len(s) >= 1:
GRID[period - 1][0] = int(s[0]) # group 1
if len(s) >= 2:
GRID[period - 1][1] = int(s[1]) # group 2
# d-block (10 wide), only in periods >= 4
for i, z in enumerate(d):
if i < 10:
GRID[period - 1][2 + i] = int(z) # groups 3..12
# p-block (6 wide)
for i, z in enumerate(p[-6:]): # last 6 p-block in order
GRID[period - 1][12 + i] = int(z) # groups 13..18
# f-block lists (lanthanides/actinides)
LAN = [int(z) for z in DF["Z"] if 57 <= int(z) <= 71]
ACT = [int(z) for z in DF["Z"] if 89 <= int(z) <= 103]
# -----------------------------
# Plotting (Matplotlib -> gr.Plot)
# -----------------------------
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
fig, ax = plt.subplots()
ax.scatter(trend_df["Z"], trend_df[prop_key])
sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
if not sel.empty and not pd.isna(sel.values[0]):
ax.scatter([Z], [sel.values[0]], s=80)
ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
ax.set_xlabel("Atomic number (Z)")
ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
fig.tight_layout()
return fig
def plot_heatmap(property_key: str):
prop_label = dict(NUMERIC_PROPS)[property_key]
grid_vals = np.full((MAX_PERIOD, MAX_GROUP), np.nan, dtype=float)
for r in range(MAX_PERIOD):
for c in range(MAX_GROUP):
z = GRID[r][c]
if z is None:
continue
val = DF.loc[DF["Z"] == z, property_key].values[0]
if not pd.isna(val):
grid_vals[r, c] = float(val)
fig, ax = plt.subplots()
im = ax.imshow(grid_vals, origin="upper", aspect="auto")
ax.set_xticks(range(MAX_GROUP))
ax.set_xticklabels([str(i) for i in range(1, MAX_GROUP + 1)])
ax.set_yticks(range(MAX_PERIOD))
ax.set_yticklabels([str(i) for i in range(1, MAX_PERIOD + 1)])
ax.set_xlabel("Group")
ax.set_ylabel("Period")
ax.set_title(f"Periodic heatmap: {prop_label}")
fig.colorbar(im, ax=ax, label=prop_label)
fig.tight_layout()
return fig
# -----------------------------
# Callbacks
# -----------------------------
def element_info(z_or_symbol: str):
try:
if z_or_symbol.isdigit():
Z = int(z_or_symbol)
_ = elements[Z]
else:
el = elements.symbol(z_or_symbol)
Z = el.number
except Exception:
return f"Unknown element: {z_or_symbol}", None, None
row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
symbol = row["symbol"]
facts = []
facts.extend(CURATED_FACTS.get(symbol, []))
facts.append(GROUP_FACTS.get(row["category"], None))
facts = [f for f in facts if f]
props_lines = [
f"{row['name']} ({symbol}), Z = {Z}",
f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
f"Group {row['group'] if row['group'] is not None else '—'}, "
f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
f"Atomic mass: {row['mass'] if not pd.isna(row['mass']) else '—'} u",
f"Density: {row['density'] if not pd.isna(row['density']) else '—'} g/cm³",
f"Electronegativity: {row['electronegativity'] if not pd.isna(row['electronegativity']) else '—'} (Pauling)",
f"Melting point: {row['melting_point'] if not pd.isna(row['melting_point']) else '—'} K | "
f"Boiling point: {row['boiling_point'] if not pd.isna(row['boiling_point']) else '—'} K",
f"vdW radius: {row['vdw_radius'] if not pd.isna(row['vdw_radius']) else '—'} pm | "
f"Covalent radius: {row['covalent_radius'] if not pd.isna(row['covalent_radius']) else '—'} pm",
f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
]
info_text = "\n".join(props_lines)
facts_text = "\n• ".join(["Interesting facts:"] + facts) if facts else "No fact on file—still cool though!"
prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
trend_df = DF[["Z", "symbol", prop_key]].dropna()
fig = plot_trend(trend_df, prop_key, Z, symbol)
return info_text, facts_text, fig
def handle_button_click(z: int):
return element_info(str(z))
def search_element(query: str):
query = (query or "").strip()
if not query:
return gr.update(), gr.update(), gr.update()
return element_info(query)
# -----------------------------
# UI (Gradio 4.29.0 compatible)
# -----------------------------
with gr.Blocks(title="Interactive Periodic Table") as demo:
gr.Markdown("# 🧪 Interactive Periodic Table\nClick an element or search by symbol/name/atomic number.")
with gr.Row():
# Inspector first so buttons can target these outputs
with gr.Column(scale=1):
gr.Markdown("### Inspector")
search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
info = gr.Textbox(label="Properties", lines=10, interactive=False)
facts = gr.Markdown("Select an element to see fun facts.")
trend = gr.Plot()
search.submit(search_element, inputs=[search], outputs=[info, facts, trend])
gr.Markdown("### Trend heatmap")
prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
heat = gr.Plot()
prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])
with gr.Column(scale=2):
gr.Markdown("### Main Table")
# Group headers (1..18)
with gr.Row():
for g in range(1, 19):
gr.Markdown(f"**{g}**")
# Grid of element buttons
for r in range(MAX_PERIOD):
with gr.Row():
for c in range(MAX_GROUP):
z = GRID[r][c]
if z is None:
gr.Button("", interactive=False)
else:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
gr.Markdown("### f-block (lanthanides & actinides)")
with gr.Row():
for z in LAN:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
with gr.Row():
for z in ACT:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(handle_button_click, inputs=[gr.Number(z, visible=False)],
outputs=[info, facts, trend])
if __name__ == "__main__":
demo.launch()
|