File size: 2,990 Bytes
1e494e3
 
 
cce759a
1e494e3
cd11250
1e494e3
 
cce759a
 
1e494e3
 
 
 
 
 
dfb2eec
cce759a
 
1e494e3
 
 
 
 
 
 
 
 
 
 
a404f18
1e494e3
 
 
 
 
 
 
cce759a
cd11250
 
 
 
 
 
 
 
 
 
 
 
 
 
cce759a
645ea59
cce759a
1e494e3
 
cd11250
 
 
 
 
 
 
 
 
cce759a
1e494e3
 
 
 
 
cd11250
cce759a
1e494e3
 
cce759a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
from torch.nn.functional import softmax
import re

app = FastAPI(
    title="Contact Information Detection API",
    description="API for detecting contact information in text",
    version="1.0.0",
    docs_url="/"
)

class ContactDetector:
    def __init__(self):
        cache_dir = "/app/model_cache"
        self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base', cache_dir=cache_dir)
        self.model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2, cache_dir=cache_dir)
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model.to(self.device)
        self.model.eval()

    def detect_contact_info(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device)
        with torch.no_grad():
            outputs = self.model(**inputs)
        probabilities = softmax(outputs.logits, dim=1)
        return probabilities[0][1].item()  # Probability of contact info

    def is_contact_info(self, text, threshold=0.45):
        return self.detect_contact_info(text) > threshold

detector = ContactDetector()

class TextInput(BaseModel):
    text: str


def check_regex_patterns(text):
    patterns = [
        r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',  # Email
        r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b',  # Phone number
        r'\b\d{5}(?:[-\s]\d{4})?\b',  # ZIP code
        r'\b\d+\s+[\w\s]+(?:street|st|avenue|ave|road|rd|highway|hwy|square|sq|trail|trl|drive|dr|court|ct|park|parkway|pkwy|circle|cir|boulevard|blvd)\b\s*(?:[a-z]+\s*\d{1,3})?(?:,\s*(?:apt|bldg|dept|fl|hngr|lot|pier|rm|ste|unit|#)\s*[a-z0-9-]+)?(?:,\s*[a-z]+\s*[a-z]{2}\s*\d{5}(?:-\d{4})?)?',  # Street address
        r'(?:http|https)://(?:www\.)?[a-zA-Z0-9-]+\.[a-zA-Z]{2,}(?:/[^\s]*)?'  # Website URL
    ]
    
    for pattern in patterns:
        if re.search(pattern, text, re.IGNORECASE):
            return True
    return False



@app.post("/detect_contact", summary="Detect contact information in text")
async def detect_contact(input: TextInput):
    try:
        # First, check with regex patterns
        if check_regex_patterns(input.text):
            return {
                "text": input.text,
                "contact_probability": 1.0,
                "is_contact_info": True,
                "method": "regex"
            }
        
        # If no regex patterns match, use the model
        probability = detector.detect_contact_info(input.text)
        is_contact = detector.is_contact_info(input.text)
        return {
            "text": input.text,
            "contact_probability": probability,
            "is_contact_info": is_contact,
            "method": "model"
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))