parth parekh
commited on
Commit
·
1e494e3
1
Parent(s):
2303961
added basic distilbart and it should most probablly work
Browse files- Dockerfile +20 -0
- app.py +48 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
libglib2.0-0 \
|
7 |
+
libsm6 \
|
8 |
+
libxext6 \
|
9 |
+
libxrender-dev \
|
10 |
+
libgl1-mesa-glx \
|
11 |
+
wget \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
COPY requirements.txt .
|
15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
16 |
+
|
17 |
+
COPY . .
|
18 |
+
|
19 |
+
|
20 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "4"]
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import torch
|
4 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
5 |
+
from torch.nn.functional import softmax
|
6 |
+
|
7 |
+
app = FastAPI(
|
8 |
+
title="Contact Information Detection API",
|
9 |
+
description="API for detecting contact information in text",
|
10 |
+
version="1.0.0",
|
11 |
+
docs_url="/"
|
12 |
+
)
|
13 |
+
|
14 |
+
class ContactDetector:
|
15 |
+
def __init__(self):
|
16 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
17 |
+
self.model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2)
|
18 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
self.model.to(self.device)
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
def detect_contact_info(self, text):
|
23 |
+
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = self.model(**inputs)
|
26 |
+
probabilities = softmax(outputs.logits, dim=1)
|
27 |
+
return probabilities[0][1].item() # Probability of contact info
|
28 |
+
|
29 |
+
def is_contact_info(self, text, threshold=0.5):
|
30 |
+
return self.detect_contact_info(text) > threshold
|
31 |
+
|
32 |
+
detector = ContactDetector()
|
33 |
+
|
34 |
+
class TextInput(BaseModel):
|
35 |
+
text: str
|
36 |
+
|
37 |
+
@app.post("/detect_contact", summary="Detect contact information in text")
|
38 |
+
async def detect_contact(input: TextInput):
|
39 |
+
try:
|
40 |
+
probability = detector.detect_contact_info(input.text)
|
41 |
+
is_contact = detector.is_contact_info(input.text)
|
42 |
+
return {
|
43 |
+
"text": input.text,
|
44 |
+
"contact_probability": probability,
|
45 |
+
"is_contact_info": is_contact
|
46 |
+
}
|
47 |
+
except Exception as e:
|
48 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.68.0
|
2 |
+
uvicorn==0.15.0
|
3 |
+
torch==2.4.1
|
4 |
+
transformers==4.10.0
|