File size: 2,153 Bytes
1e494e3
 
 
 
cd11250
3cfd7e3
1e494e3
 
cce759a
3cfd7e3
1e494e3
 
 
 
 
 
 
 
cce759a
cd11250
 
 
 
 
 
 
 
 
 
 
 
 
 
cce759a
645ea59
cce759a
1e494e3
 
cd11250
 
 
 
 
 
 
 
 
3cfd7e3
 
 
 
1e494e3
 
 
cd11250
cce759a
1e494e3
 
cce759a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from torch.nn.functional import softmax
import re
from .predictor import predict

app = FastAPI(
    title="Contact Information Detection API",
    description="API for detecting contact information in text great thanks to xxparthparekhxx/ContactShieldAI for the model",
    version="1.0.0",
    docs_url="/"
)


class TextInput(BaseModel):
    text: str


def check_regex_patterns(text):
    patterns = [
        r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',  # Email
        r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b',  # Phone number
        r'\b\d{5}(?:[-\s]\d{4})?\b',  # ZIP code
        r'\b\d+\s+[\w\s]+(?:street|st|avenue|ave|road|rd|highway|hwy|square|sq|trail|trl|drive|dr|court|ct|park|parkway|pkwy|circle|cir|boulevard|blvd)\b\s*(?:[a-z]+\s*\d{1,3})?(?:,\s*(?:apt|bldg|dept|fl|hngr|lot|pier|rm|ste|unit|#)\s*[a-z0-9-]+)?(?:,\s*[a-z]+\s*[a-z]{2}\s*\d{5}(?:-\d{4})?)?',  # Street address
        r'(?:http|https)://(?:www\.)?[a-zA-Z0-9-]+\.[a-zA-Z]{2,}(?:/[^\s]*)?'  # Website URL
    ]
    
    for pattern in patterns:
        if re.search(pattern, text, re.IGNORECASE):
            return True
    return False



@app.post("/detect_contact", summary="Detect contact information in text")
async def detect_contact(input: TextInput):
    try:
        # First, check with regex patterns
        if check_regex_patterns(input.text):
            return {
                "text": input.text,
                "contact_probability": 1.0,
                "is_contact_info": True,
                "method": "regex"
            }
        
     # If no regex patterns match, use the model
        probabilities = predict(input.text)
        probability = probabilities[1]  # Probability of containing contact info
        is_contact = probability > 0.5  # You can adjust this threshold as needed
        return {
            "text": input.text,
            "contact_probability": probability,
            "is_contact_info": is_contact,
            "method": "model"
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))