my-rag-qa / Evaluators
VictorTomas09's picture
Create Evaluators
ff2408d verified
raw
history blame
3.61 kB
import os
import pickle
import numpy as np
import faiss
import torch
from datasets import load_dataset
import evaluate
# Import RAG setup and retrieval logic from app.py
from app import setup_rag, retrieve
def retrieval_recall(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
"""
Compute raw Retrieval Recall@k on the first num_samples examples.
If rerank_k is set, also apply cross-encoder reranking.
"""
hits = 0
for ex in dataset.select(range(num_samples)):
question = ex["question"]
gold_answers = ex["answers"]["text"]
# get top-k retrieved contexts
if rerank_k:
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
else:
# skip reranking: use top-k directly
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
ctxs = [passages[i] for i in idxs[0]]
# check if any gold span appears
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
hits += 1
recall = hits / num_samples
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
return recall
def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
"""
Retrieval Recall@k evaluated only on answerable questions.
"""
hits, total = 0, 0
for ex in dataset.select(range(num_samples)):
if not ex["answers"]["text"]:
continue
total += 1
question = ex["question"]
if rerank_k:
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
else:
q_emb = embedder.encode([question], convert_to_numpy=True)
distances, idxs = index.search(q_emb, k)
ctxs = [passages[i] for i in idxs[0]]
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
hits += 1
recall = hits / total if total > 0 else 0.0
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
return recall
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
"""
End-to-end QA EM/F1 on answerable subset using the retrieve_and_answer logic.
"""
squad_metric = evaluate.load("squad")
preds, refs = [], []
for ex in dataset.select(range(num_samples)):
if not ex["answers"]["text"]:
continue
qid = ex["id"]
# retrieve and generate
answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe)
preds.append({"id": qid, "prediction_text": answer})
refs.append({"id": qid, "answers": ex["answers"]})
results = squad_metric.compute(predictions=preds, references=refs)
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
return results
def main():
# Setup RAG components
passages, embedder, reranker, index, qa_pipe = setup_rag()
# Load SQuAD v2 validation set
squad = load_dataset("rajpurkar/squad_v2", split="validation")
# Run evaluations
retrieval_recall(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
retrieval_recall_answerable(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
if __name__ == "__main__":
main()