Spaces:
Sleeping
Sleeping
Create Evaluators
Browse files- Evaluators +93 -0
Evaluators
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import torch
|
6 |
+
from datasets import load_dataset
|
7 |
+
import evaluate
|
8 |
+
|
9 |
+
# Import RAG setup and retrieval logic from app.py
|
10 |
+
from app import setup_rag, retrieve
|
11 |
+
|
12 |
+
|
13 |
+
def retrieval_recall(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
14 |
+
"""
|
15 |
+
Compute raw Retrieval Recall@k on the first num_samples examples.
|
16 |
+
If rerank_k is set, also apply cross-encoder reranking.
|
17 |
+
"""
|
18 |
+
hits = 0
|
19 |
+
for ex in dataset.select(range(num_samples)):
|
20 |
+
question = ex["question"]
|
21 |
+
gold_answers = ex["answers"]["text"]
|
22 |
+
# get top-k retrieved contexts
|
23 |
+
if rerank_k:
|
24 |
+
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
|
25 |
+
else:
|
26 |
+
# skip reranking: use top-k directly
|
27 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
28 |
+
distances, idxs = index.search(q_emb, k)
|
29 |
+
ctxs = [passages[i] for i in idxs[0]]
|
30 |
+
# check if any gold span appears
|
31 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
32 |
+
hits += 1
|
33 |
+
recall = hits / num_samples
|
34 |
+
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
|
35 |
+
return recall
|
36 |
+
|
37 |
+
|
38 |
+
def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
39 |
+
"""
|
40 |
+
Retrieval Recall@k evaluated only on answerable questions.
|
41 |
+
"""
|
42 |
+
hits, total = 0, 0
|
43 |
+
for ex in dataset.select(range(num_samples)):
|
44 |
+
if not ex["answers"]["text"]:
|
45 |
+
continue
|
46 |
+
total += 1
|
47 |
+
question = ex["question"]
|
48 |
+
if rerank_k:
|
49 |
+
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
|
50 |
+
else:
|
51 |
+
q_emb = embedder.encode([question], convert_to_numpy=True)
|
52 |
+
distances, idxs = index.search(q_emb, k)
|
53 |
+
ctxs = [passages[i] for i in idxs[0]]
|
54 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
|
55 |
+
hits += 1
|
56 |
+
recall = hits / total if total > 0 else 0.0
|
57 |
+
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
|
58 |
+
return recall
|
59 |
+
|
60 |
+
|
61 |
+
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
|
62 |
+
"""
|
63 |
+
End-to-end QA EM/F1 on answerable subset using the retrieve_and_answer logic.
|
64 |
+
"""
|
65 |
+
squad_metric = evaluate.load("squad")
|
66 |
+
preds, refs = [], []
|
67 |
+
for ex in dataset.select(range(num_samples)):
|
68 |
+
if not ex["answers"]["text"]:
|
69 |
+
continue
|
70 |
+
qid = ex["id"]
|
71 |
+
# retrieve and generate
|
72 |
+
answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe)
|
73 |
+
preds.append({"id": qid, "prediction_text": answer})
|
74 |
+
refs.append({"id": qid, "answers": ex["answers"]})
|
75 |
+
results = squad_metric.compute(predictions=preds, references=refs)
|
76 |
+
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
77 |
+
return results
|
78 |
+
|
79 |
+
|
80 |
+
def main():
|
81 |
+
# Setup RAG components
|
82 |
+
passages, embedder, reranker, index, qa_pipe = setup_rag()
|
83 |
+
# Load SQuAD v2 validation set
|
84 |
+
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
85 |
+
|
86 |
+
# Run evaluations
|
87 |
+
retrieval_recall(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
88 |
+
retrieval_recall_answerable(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
89 |
+
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
main()
|