llm_chat_transfer / README.md
Varshith1909
P3
1f27252
---
title: πŸ”„ LLM Conversation Transfer Tool
emoji: πŸ”„
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.33.1
python_version: 3.1
app_file: app.py
pinned: false
tags:
- mcp-server-track
- llm
- conversation-transfer
- gradio
- mcp
---
# πŸ”„ LLM Conversation Transfer Tool
**Tags:** mcp-server-track
A powerful tool that seamlessly transfers conversations between different LLM providers (ChatGPT, Claude, Mistral, etc.) and functions as both a Gradio web app and an MCP (Model Context Protocol) server.
## [Link to the Demo video](https://drive.google.com/file/d/1jHsv4c0yqhA2o0FBhkZOegBrf3A6IVyF/view?usp=sharing)
## 🌟 Features
- **Universal Conversation Parser**: Supports JSON format, plain text, and various chat export formats
- **Multiple LLM Providers**: Transfer to Anthropic Claude, Mistral AI, and Hyperbolic Labs
- **Dual Interface**: Web app for interactive use + MCP server for programmatic access
- **Smart Context Preservation**: Maintains conversation flow and context during transfers
- **Real-time Status**: Live API key validation and connection status
## πŸš€ How to Use
### Web Interface
1. **Paste Your Conversation**: Copy from ChatGPT, Claude, or any chat interface
2. **Select Providers**: Choose source and target LLM providers
3. **Transfer**: Click the button and get a response from your target LLM
### As MCP Server
This app can be used as an MCP server with any MCP-compatible client:
**Available Tool:** `transfer_conversation`
- `history_text`: Conversation in JSON or plain text format
- `source_provider`: Source LLM name (ChatGPT, Claude, etc.)
- `target_provider`: Target LLM (anthropic, mistral, hyperbolic)
## πŸ“– MCP Server Demo Video
[πŸŽ₯ **Watch the MCP Server in Action**](https://your-demo-video-link-here.com)
*The video demonstrates:*
- Setting up the MCP server with Claude Desktop
- Transferring a conversation from ChatGPT to Claude
- Using the tool within an MCP client environment
- Real-time conversation continuation across different LLMs
## πŸ”§ Supported Formats
### Input Formats
```
Plain Text:
User: Hello there!
Assistant: Hi! How can I help you?
JSON:
[
{"role": "user", "content": "Hello there!"},
{"role": "assistant", "content": "Hi! How can I help you?"}
]
```
### Supported Providers
- βœ… **Anthropic** (Claude 3 Haiku)
- βœ… **Mistral AI** (Mistral Small)
- βœ… **Hyperbolic Labs** (Llama 2)
## πŸ› οΈ Technical Details
Built with:
- **Gradio**: Interactive web interface
- **MCP (Model Context Protocol)**: Server functionality
- **HTTPX**: Async HTTP requests
- **Modal**: Cloud deployment platform
### API Integration
- Anthropic Messages API
- Mistral Chat Completions API
- Hyperbolic Labs API
## 🚦 Setup & Configuration
### Environment Variables
```env
ANTHROPIC_API_KEY=your_anthropic_key
MISTRAL_API_KEY=your_mistral_key
HYPERBOLIC_API_KEY=your_hyperbolic_key
```
### Local Development
```bash
# Install dependencies
pip install -r requirements.txt
# Run as web app
python main.py
# Run as MCP server
python mcp_server.py
```
### Modal Deployment
```bash
modal deploy main.py
```
## 🎯 Use Cases
- **LLM Comparison**: Test how different models respond to the same conversation
- **Context Migration**: Move conversations between different AI assistants
- **Model Evaluation**: Compare responses across multiple LLM providers
- **Workflow Integration**: Embed in larger AI workflows via MCP protocol
## πŸ“Š Status Dashboard
The app includes real-time status monitoring:
- API key validation
- Connection health checks
- Transfer success rates
- Error reporting
## πŸ”’ Privacy & Security
- No conversation data is stored
- API keys are handled securely through environment variables
- All transfers happen in real-time without logging
- HTTPS connections for all API calls
## 🀝 Contributing
This project is part of the MCP Server Track. Contributions welcome!
1. Fork the repository
2. Create a feature branch
3. Submit a pull request
## πŸ“œ License
MIT License - feel free to use and modify!
---
**Made for the MCP Server Track** πŸ†
*Seamlessly bridging conversations across the AI ecosystem*