VanguardAI's picture
Update app.py
bd00948 verified
raw
history blame
6.64 kB
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
import spaces
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.llms.groq import Groq
from PIL import Image
from tavily import TavilyClient
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Initialize models and clients
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
client = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
# Image generation model
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
# Tavily Client for web search
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))
# Function to play voice output
def play_voice_output(response):
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# NumPy Code Calculator Tool
def numpy_code_calculator(query):
try:
llm_response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "user", "content": f"Write NumPy code to: {query}"}
]
)
code = llm_response.choices[0].message.content
print(f"Generated NumPy code:\n{code}")
# Execute the code in a safe environment
local_dict = {"np": np}
exec(code, local_dict)
result = local_dict.get("result", "No result found")
return str(result)
except Exception as e:
return f"Error: {e}"
# Web Search Tool
def web_search(query):
answer = tavily_client.qna_search(query=query)
return answer
# Image Generation Tool
def image_generation(query):
image = image_pipe(prompt=query, num_inference_steps=20, guidance_scale=7.5).images[0]
image.save("output.jpg")
return "output.jpg"
# Function to handle different input types and choose the right tool
def handle_input(user_prompt, image=None, audio=None, websearch=False):
if audio:
if isinstance(audio, str):
audio = open(audio, "rb")
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
tools = [
FunctionTool.from_defaults(fn=numpy_code_calculator, name="Numpy Code Calculator"),
FunctionTool.from_defaults(fn=web_search, name="Web Search"),
FunctionTool.from_defaults(fn=image_generation, name="Image Generation"),
]
llm = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
agent = ReActAgent.from_tools(tools, llm=llm, verbose=True)
if image:
image = Image.open(image).convert('RGB')
messages = [{"role": "user", "content": [image, user_prompt]}]
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
return response
if websearch:
response = agent.chat(f"{user_prompt} Use the Web Search tool if necessary.")
else:
response = agent.chat(user_prompt)
return response
# Gradio UI Setup
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# AI Assistant")
with gr.Row():
with gr.Column(scale=2):
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
with gr.Column(scale=1):
submit = gr.Button("Submit")
output_label = gr.Label(label="Output")
audio_output = gr.Audio(label="Audio Output", visible=False)
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, audio_input, voice_only_mode, websearch_mode],
outputs=[output_label, audio_output]
)
voice_only_mode.change(
lambda x: gr.update(visible=not x),
inputs=voice_only_mode,
outputs=[user_prompt, image_input, websearch_mode, submit]
)
voice_only_mode.change(
lambda x: gr.update(visible=x),
inputs=voice_only_mode,
outputs=[audio_input]
)
return demo
# Main interface function
@spaces.GPU()
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False):
vqa_model.to(device='cuda', dtype=torch.bfloat16)
tts_model.to("cuda")
unet.to("cuda")
image_pipe.to("cuda")
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch)
if voice_only:
audio_output = play_voice_output(response)
return "Response generated.", audio_output
else:
return response, None
# Launch the UI
demo = create_ui()
demo.launch()