File size: 6,644 Bytes
5f52293
ed2f5ce
69f2e98
ed2f5ce
 
2a36ff2
82043d5
ed2f5ce
 
 
345a48b
 
ab48671
ed2f5ce
2a200be
ed2f5ce
2e5cfb3
 
ed2f5ce
1197e50
ed2f5ce
bd00948
 
b1f3cf3
1197e50
5f53de2
2e5a20c
d5685b0
7f9822a
ed2f5ce
d5685b0
1197e50
2e5cfb3
 
 
 
2b4eaa1
 
1197e50
2e5cfb3
d5685b0
1197e50
79549f2
2a200be
1197e50
ed2f5ce
 
 
 
 
 
 
 
d5685b0
1197e50
 
ed2f5ce
1197e50
 
 
 
 
 
 
c1e9d2a
1197e50
 
 
 
ed2f5ce
 
 
1197e50
72a27e8
1197e50
 
 
 
 
 
 
 
 
 
 
 
e39cb32
2a200be
c1e9d2a
 
2a200be
 
 
 
 
 
1197e50
5db9d8c
 
 
1197e50
 
d2df209
5db9d8c
03ff38e
2a200be
 
 
1197e50
2a200be
 
1197e50
5db9d8c
2a200be
5db9d8c
2a200be
 
82043d5
2a200be
 
 
 
 
 
 
 
 
 
 
 
 
 
1197e50
2a200be
 
 
 
 
e39cb32
1197e50
2a200be
 
 
 
 
e39cb32
2a200be
 
 
 
 
 
 
 
d5685b0
1197e50
 
e39cb32
1197e50
 
c1e9d2a
1197e50
 
e39cb32
1197e50
 
a742a0d
 
1197e50
 
 
a742a0d
2a200be
5db9d8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
import spaces
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.llms.groq import Groq
from PIL import Image
from tavily import TavilyClient
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

# Initialize models and clients
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
client = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))


vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
                                       device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)

tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")

# Image generation model
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"

unet = UNet2DConditionModel.from_config(base, subfolder="unet")
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")

# Tavily Client for web search
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))

# Function to play voice output
def play_voice_output(response):
    description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
    input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
    prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
    generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
    return "output.wav"

# NumPy Code Calculator Tool
def numpy_code_calculator(query):
    try:
        llm_response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "user", "content": f"Write NumPy code to: {query}"}
            ]
        )
        code = llm_response.choices[0].message.content
        print(f"Generated NumPy code:\n{code}")

        # Execute the code in a safe environment
        local_dict = {"np": np}
        exec(code, local_dict)
        result = local_dict.get("result", "No result found")
        return str(result)
    except Exception as e:
        return f"Error: {e}"

# Web Search Tool
def web_search(query):
    answer = tavily_client.qna_search(query=query)
    return answer

# Image Generation Tool
def image_generation(query):
    image = image_pipe(prompt=query, num_inference_steps=20, guidance_scale=7.5).images[0]
    image.save("output.jpg")
    return "output.jpg"

# Function to handle different input types and choose the right tool
def handle_input(user_prompt, image=None, audio=None, websearch=False):
    if audio:
        if isinstance(audio, str):
            audio = open(audio, "rb") 
        transcription = client.audio.transcriptions.create(
            file=(audio.name, audio.read()),
            model="whisper-large-v3"
        )
        user_prompt = transcription.text

    tools = [
        FunctionTool.from_defaults(fn=numpy_code_calculator, name="Numpy Code Calculator"),
        FunctionTool.from_defaults(fn=web_search, name="Web Search"),
        FunctionTool.from_defaults(fn=image_generation, name="Image Generation"),
    ]

    llm = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
    agent = ReActAgent.from_tools(tools, llm=llm, verbose=True)

    if image:
        image = Image.open(image).convert('RGB')
        messages = [{"role": "user", "content": [image, user_prompt]}]
        response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
        return response

    if websearch:
        response = agent.chat(f"{user_prompt} Use the Web Search tool if necessary.")
    else:
        response = agent.chat(user_prompt)

    return response

# Gradio UI Setup
def create_ui():
    with gr.Blocks() as demo:
        gr.Markdown("# AI Assistant")
        with gr.Row():
            with gr.Column(scale=2):
                user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
            with gr.Column(scale=1):
                image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
                audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
                voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
                websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
            with gr.Column(scale=1):
                submit = gr.Button("Submit")

        output_label = gr.Label(label="Output")
        audio_output = gr.Audio(label="Audio Output", visible=False)

        submit.click(
            fn=main_interface,
            inputs=[user_prompt, image_input, audio_input, voice_only_mode, websearch_mode],
            outputs=[output_label, audio_output]
        )

        voice_only_mode.change(
            lambda x: gr.update(visible=not x),
            inputs=voice_only_mode,
            outputs=[user_prompt, image_input, websearch_mode, submit]
        )
        voice_only_mode.change(
            lambda x: gr.update(visible=x),
            inputs=voice_only_mode,
            outputs=[audio_input]
        )

    return demo

# Main interface function
@spaces.GPU()
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False):
    vqa_model.to(device='cuda', dtype=torch.bfloat16)
    tts_model.to("cuda")
    unet.to("cuda")
    image_pipe.to("cuda")

    response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch)

    if voice_only:
        audio_output = play_voice_output(response)
        return "Response generated.", audio_output
    else:
        return response, None

# Launch the UI
demo = create_ui()
demo.launch()