Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import os
|
4 |
import numpy as np
|
5 |
from groq import Groq
|
6 |
-
import spaces
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
@@ -11,9 +11,9 @@ import soundfile as sf
|
|
11 |
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from langchain.agents import
|
16 |
-
from langchain.llms import
|
17 |
from PIL import Image
|
18 |
from decord import VideoReader, cpu
|
19 |
from tavily import TavilyClient
|
@@ -24,6 +24,7 @@ from safetensors.torch import load_file
|
|
24 |
# Initialize models and clients
|
25 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
26 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
|
27 |
|
28 |
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
|
29 |
device_map="auto", torch_dtype=torch.bfloat16)
|
@@ -43,7 +44,7 @@ image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dt
|
|
43 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
44 |
|
45 |
# Tavily Client for web search
|
46 |
-
tavily_client = TavilyClient(api_key=os.environ.get("
|
47 |
|
48 |
# Function to play voice output
|
49 |
def play_voice_output(response):
|
@@ -59,8 +60,6 @@ def play_voice_output(response):
|
|
59 |
def numpy_code_calculator(query):
|
60 |
"""Generates and executes NumPy code for mathematical operations."""
|
61 |
try:
|
62 |
-
# You might need to use a more sophisticated approach to generate NumPy code
|
63 |
-
# based on the user's query. This is a simple example.
|
64 |
llm_response = client.chat.completions.create(
|
65 |
model=MODEL,
|
66 |
messages=[
|
@@ -68,7 +67,7 @@ def numpy_code_calculator(query):
|
|
68 |
]
|
69 |
)
|
70 |
code = llm_response.choices[0].message.content
|
71 |
-
print(f"Generated NumPy code:\n{code}")
|
72 |
|
73 |
# Execute the code in a safe environment
|
74 |
local_dict = {"np": np}
|
@@ -104,9 +103,12 @@ def doc_question_answering(query, file_path):
|
|
104 |
return qa.run(query)
|
105 |
|
106 |
# Function to handle different input types and choose the right tool
|
107 |
-
def handle_input(user_prompt, image=None,
|
108 |
# Voice input handling
|
109 |
if audio:
|
|
|
|
|
|
|
110 |
transcription = client.audio.transcriptions.create(
|
111 |
file=(audio.name, audio.read()),
|
112 |
model="whisper-large-v3"
|
@@ -143,12 +145,8 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
143 |
)
|
144 |
|
145 |
# Initialize agent
|
146 |
-
agent =
|
147 |
-
|
148 |
-
client,
|
149 |
-
agent="zero-shot-react-description",
|
150 |
-
verbose=True,
|
151 |
-
)
|
152 |
|
153 |
# If user uploaded an image and text, use MiniCPM model
|
154 |
if image:
|
@@ -159,9 +157,9 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
159 |
|
160 |
# Use the agent to determine the best tool and get the response
|
161 |
if websearch:
|
162 |
-
response =
|
163 |
else:
|
164 |
-
response =
|
165 |
|
166 |
return response
|
167 |
|
@@ -209,7 +207,7 @@ def create_ui():
|
|
209 |
def main_interface(user_prompt, image=None, audio=None, doc=None, voice_only=False, websearch=False):
|
210 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
211 |
tts_model.to("cuda")
|
212 |
-
unet.to("cuda"
|
213 |
image_pipe.to("cuda")
|
214 |
|
215 |
response = handle_input(user_prompt, image=image, audio=audio, doc=doc, websearch=websearch)
|
|
|
3 |
import os
|
4 |
import numpy as np
|
5 |
from groq import Groq
|
6 |
+
import spaces # Import spaces
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
|
11 |
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
+
from langchain.chains import RetrievalQA, LLMChain
|
15 |
+
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
|
16 |
+
from langchain.llms import Groq as GroqLlm # Import GroqLlm
|
17 |
from PIL import Image
|
18 |
from decord import VideoReader, cpu
|
19 |
from tavily import TavilyClient
|
|
|
24 |
# Initialize models and clients
|
25 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
26 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
27 |
+
llm = GroqLlm(client=client, model=MODEL) # Initialize GroqLlm
|
28 |
|
29 |
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
|
30 |
device_map="auto", torch_dtype=torch.bfloat16)
|
|
|
44 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
|
46 |
# Tavily Client for web search
|
47 |
+
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY")) # Corrected API key
|
48 |
|
49 |
# Function to play voice output
|
50 |
def play_voice_output(response):
|
|
|
60 |
def numpy_code_calculator(query):
|
61 |
"""Generates and executes NumPy code for mathematical operations."""
|
62 |
try:
|
|
|
|
|
63 |
llm_response = client.chat.completions.create(
|
64 |
model=MODEL,
|
65 |
messages=[
|
|
|
67 |
]
|
68 |
)
|
69 |
code = llm_response.choices[0].message.content
|
70 |
+
print(f"Generated NumPy code:\n{code}")
|
71 |
|
72 |
# Execute the code in a safe environment
|
73 |
local_dict = {"np": np}
|
|
|
103 |
return qa.run(query)
|
104 |
|
105 |
# Function to handle different input types and choose the right tool
|
106 |
+
def handle_input(user_prompt, image=None, audio=None, doc=None, websearch=False):
|
107 |
# Voice input handling
|
108 |
if audio:
|
109 |
+
# Make sure 'audio' is a file object
|
110 |
+
if isinstance(audio, str):
|
111 |
+
audio = open(audio, "rb")
|
112 |
transcription = client.audio.transcriptions.create(
|
113 |
file=(audio.name, audio.read()),
|
114 |
model="whisper-large-v3"
|
|
|
145 |
)
|
146 |
|
147 |
# Initialize agent
|
148 |
+
agent = ZeroShotAgent(llm_chain=LLMChain(llm=llm, prompt=None), tools=tools, verbose=True)
|
149 |
+
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
|
|
|
|
|
|
|
|
150 |
|
151 |
# If user uploaded an image and text, use MiniCPM model
|
152 |
if image:
|
|
|
157 |
|
158 |
# Use the agent to determine the best tool and get the response
|
159 |
if websearch:
|
160 |
+
response = agent_executor.run(f"{user_prompt} Use the Web Search tool if necessary.")
|
161 |
else:
|
162 |
+
response = agent_executor.run(user_prompt)
|
163 |
|
164 |
return response
|
165 |
|
|
|
207 |
def main_interface(user_prompt, image=None, audio=None, doc=None, voice_only=False, websearch=False):
|
208 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
209 |
tts_model.to("cuda")
|
210 |
+
unet.to("cuda")
|
211 |
image_pipe.to("cuda")
|
212 |
|
213 |
response = handle_input(user_prompt, image=image, audio=audio, doc=doc, websearch=websearch)
|