img-eval-v2 / app.py
VOIDER's picture
Update app.py
bdc8307 verified
import gradio as gr
import pandas as pd
import torch
import torchvision.transforms as T
from PIL import Image
import numpy as np
import io
import base64
import os
import shutil
import tempfile
# PIQ imports
try:
import piq
except ImportError:
print("Warning: PIQ library not found. Some metrics (BRISQUE, FID) will be unavailable.")
piq = None
# IQA-PyTorch imports
try:
# This import needs to succeed for NIQE and MUSIQ
from iqa_pytorch import IQA
except ImportError as e:
print(f"ERROR: IQA-PyTorch library import failed: {e}. Some metrics (NIQE, MUSIQ-NR) will be unavailable. Check installation and dependencies (like kornia).")
IQA = None
except Exception as e:
print(f"ERROR: An unexpected error occurred during IQA-PyTorch import: {e}")
IQA = None
# --- Configuration ---
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_IMAGES_PER_BATCH = 100
THUMBNAIL_SIZE = (64, 64) # (width, height) for preview
# --- Metric Normalization Parameters (Approximate typical ranges) ---
# For "lower is better" metrics, score is (max_val - current_val) / (max_val - min_val)
# For "higher is better" metrics, score is (current_val - min_val) / (max_val - min_val)
# These are heuristics and can be adjusted.
METRIC_RANGES = {
"brisque": {"min": 0, "max": 120, "lower_is_better": True}, # Typical BRISQUE range
"niqe": {"min": 0, "max": 12, "lower_is_better": True}, # Typical NIQE range
"musiq_nr": {"min": 10, "max": 90, "lower_is_better": False} # Example MUSIQ range
}
# --- Metric Functions ---
def get_brisque_score(img_tensor_chw_01):
if piq is None: return "N/A (PIQ missing)"
try:
if img_tensor_chw_01.ndim == 3:
img_tensor_bchw_01 = img_tensor_chw_01.unsqueeze(0)
else:
img_tensor_bchw_01 = img_tensor_chw_01
if img_tensor_bchw_01.shape[1] == 1:
img_tensor_bchw_01 = img_tensor_bchw_01.repeat(1, 3, 1, 1)
brisque_loss = piq.brisque(img_tensor_bchw_01.to(DEVICE), data_range=1.)
return round(brisque_loss.item(), 3)
except Exception: return "Error"
def get_niqe_score(img_pil_rgb):
if IQA is None: return "N/A (IQA missing)"
try:
niqe_metric = IQA(libs='NIQE-PyTorch', device=DEVICE)
score = niqe_metric(img_pil_rgb)
return round(score.item(), 3)
except Exception: return "Error"
def get_musiq_nr_score(img_pil_rgb):
if IQA is None: return "N/A (IQA missing)"
try:
musiq_metric = IQA(libs='MUSIQ-L2N-lessons', device=DEVICE) # Example, could be other MUSIQ variants
score = musiq_metric(img_pil_rgb)
return round(score.item(), 3)
except Exception: return "Error"
def get_fid_score_piq_folders(path_to_set1_folder, path_to_set2_folder):
if piq is None: return "N/A (PIQ missing)"
try:
set1_files = [os.path.join(path_to_set1_folder, f) for f in os.listdir(path_to_set1_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
set2_files = [os.path.join(path_to_set2_folder, f) for f in os.listdir(path_to_set2_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
if not set1_files or not set2_files: return "One or both sets have no valid image files."
if len(set1_files) < 2 or len(set2_files) < 2: return f"FID needs at least 2 images per set. Found: Set1={len(set1_files)}, Set2={len(set2_files)}."
fid_metric = piq.FID()
set1_features = fid_metric.compute_feats(set1_files, device=DEVICE)
set2_features = fid_metric.compute_feats(set2_files, device=DEVICE)
if set1_features is None or set2_features is None: return "Could not extract features for one or both sets."
if set1_features.dim() == 0 or set2_features.dim() == 0 or set1_features.numel() == 0 or set2_features.numel() == 0: return "Feature extraction resulted in empty tensors."
fid_value = fid_metric(set1_features, set2_features)
return round(fid_value.item(), 3)
except Exception as e:
print(f"FID calculation error: {e}")
return f"FID Error: {str(e)[:100]}"
# --- Helper & Final Score Calculation ---
def pil_to_tensor_chw_01(img_pil_rgb):
transform = T.Compose([T.ToTensor()])
return transform(img_pil_rgb)
def create_thumbnail_base64(img_pil_rgb, size=THUMBNAIL_SIZE):
img_copy = img_pil_rgb.copy()
img_copy.thumbnail(size)
buffered = io.BytesIO()
img_copy.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
def calculate_final_score(brisque_val, niqe_val, musiq_nr_val):
normalized_scores = []
# BRISQUE
if isinstance(brisque_val, (float, int)):
cfg = METRIC_RANGES["brisque"]
val = max(cfg["min"], min(cfg["max"], brisque_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
# NIQE
if isinstance(niqe_val, (float, int)):
cfg = METRIC_RANGES["niqe"]
val = max(cfg["min"], min(cfg["max"], niqe_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
# MUSIQ-NR
if isinstance(musiq_nr_val, (float, int)):
cfg = METRIC_RANGES["musiq_nr"]
val = max(cfg["min"], min(cfg["max"], musiq_nr_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
if not normalized_scores:
return "N/A"
# Average of normalized scores, then scale to 0-10
final_score_0_10 = (sum(normalized_scores) / len(normalized_scores)) * 10.0
return round(final_score_0_10, 4)
# --- Main Processing Functions for Gradio ---
def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progress(track_tqdm=True)):
if not uploaded_file_list:
return pd.DataFrame(), "Please upload images first."
if len(uploaded_file_list) > MAX_IMAGES_PER_BATCH:
status_message = f"Too many images ({len(uploaded_file_list)}). Processing first {MAX_IMAGES_PER_BATCH} images."
uploaded_file_list = uploaded_file_list[:MAX_IMAGES_PER_BATCH]
else:
status_message = f"Processing {len(uploaded_file_list)} images..."
progress(0, desc=status_message)
results_data = []
for i, file_obj in enumerate(uploaded_file_list):
base_filename = "Unknown File"
try:
file_path = file_obj.name
base_filename = os.path.basename(file_path)
img_pil_rgb = Image.open(file_path).convert("RGB")
img_tensor_chw_01 = pil_to_tensor_chw_01(img_pil_rgb)
brisque_val = get_brisque_score(img_tensor_chw_01)
niqe_val = get_niqe_score(img_pil_rgb)
musiq_nr_val = get_musiq_nr_score(img_pil_rgb)
final_score = calculate_final_score(brisque_val, niqe_val, musiq_nr_val)
thumbnail_b64 = create_thumbnail_base64(img_pil_rgb)
preview_html = f'<img src="{thumbnail_b64}" alt="{base_filename}">'
results_data.append({
"Preview": preview_html,
"Filename": base_filename,
"BRISQUE (PIQ) (↓)": brisque_val,
"NIQE (IQA-PyTorch) (↓)": niqe_val,
"MUSIQ-NR (IQA-PyTorch) (↑)": musiq_nr_val,
"Final Score (0-10) (↑)": final_score,
})
except Exception as e:
results_data.append({
"Preview": "Error processing", "Filename": base_filename,
"BRISQUE (PIQ) (↓)": f"Load Err: {str(e)[:30]}",
"NIQE (IQA-PyTorch) (↓)": "N/A",
"MUSIQ-NR (IQA-PyTorch) (↑)": "N/A",
"Final Score (0-10) (↑)": "N/A",
})
progress((i + 1) / len(uploaded_file_list), desc=f"Processing {base_filename}")
df_results = pd.DataFrame(results_data)
status_message += f"\nPer-image metrics calculated for {len(results_data)} images."
return df_results, status_message
def process_fid_for_two_sets(set1_file_list, set2_file_list, progress=gr.Progress(track_tqdm=True)):
if not set1_file_list or not set2_file_list:
return "Please upload files for both Set 1 and Set 2."
set1_dir = tempfile.mkdtemp(prefix="fid_set1_")
set2_dir = tempfile.mkdtemp(prefix="fid_set2_")
fid_result_text = "Starting FID calculation..."
progress(0.1, desc="Preparing image sets for FID...")
try:
for i, file_obj in enumerate(set1_file_list):
shutil.copy(file_obj.name, os.path.join(set1_dir, os.path.basename(file_obj.name)))
progress(0.1 + 0.2 * (i / len(set1_file_list)), desc=f"Copying Set 1: {os.path.basename(file_obj.name)}")
for i, file_obj in enumerate(set2_file_list):
shutil.copy(file_obj.name, os.path.join(set2_dir, os.path.basename(file_obj.name)))
progress(0.3 + 0.2 * (i / len(set2_file_list)), desc=f"Copying Set 2: {os.path.basename(file_obj.name)}")
num_set1 = len(os.listdir(set1_dir)); num_set2 = len(os.listdir(set2_dir))
if num_set1 == 0 or num_set2 == 0: return f"FID Error: One or both sets are empty after copying. Set 1: {num_set1}, Set 2: {num_set2}."
progress(0.5, desc=f"Calculating FID between Set 1 ({num_set1} images) and Set 2 ({num_set2} images)...")
fid_score = get_fid_score_piq_folders(set1_dir, set2_dir)
progress(1, desc="FID calculation complete.")
fid_result_text = f"FID (PIQ) between Set 1 ({num_set1} images) and Set 2 ({num_set2} images): {fid_score}"
except Exception as e: fid_result_text = f"Error during FID preparation or calculation: {str(e)}"
finally:
if os.path.exists(set1_dir): shutil.rmtree(set1_dir)
if os.path.exists(set2_dir): shutil.rmtree(set2_dir)
return fid_result_text
# --- Gradio UI Definition ---
css_custom = """
table {font-size: 0.8em !important; width: 100% !important;}
th, td {padding: 4px !important; text-align: left !important;}
img {max-width: 64px !important; max-height: 64px !important; object-fit: contain;}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css_custom) as demo:
gr.Markdown(f"""
# Image Generation Model Evaluation Tool
**Objective:** Automated evaluation and comparison of image quality from different model versions.
Utilizes `PIQ` and `IQA-PyTorch` libraries. Runs on **{DEVICE}**.
(↓) means lower is better, (↑) means higher is better.
Final Score is a heuristic combination of available metrics (0-10, higher is better).
""")
with gr.Tabs():
with gr.TabItem("Per-Image Quality Evaluation"):
gr.Markdown(f"Upload a batch of images (up to **{MAX_IMAGES_PER_BATCH}**) to get individual quality scores.")
image_upload_input = gr.Files(label=f"Upload Images (max {MAX_IMAGES_PER_BATCH}, .png, .jpg, .jpeg, .bmp, .webp)", file_count="multiple", type="filepath")
evaluate_button_main = gr.Button("πŸ–ΌοΈ Evaluate Uploaded Images", variant="primary")
gr.Markdown("---")
status_output_main = gr.Textbox(label="πŸ“Š Evaluation Status", interactive=False, lines=2)
gr.Markdown("### πŸ–ΌοΈ Per-Image Evaluation Results")
gr.Markdown("Click column headers to sort. Previews are thumbnails.")
results_table_output = gr.DataFrame(
headers=["Preview", "Filename", "BRISQUE (PIQ) (↓)", "NIQE (IQA-PyTorch) (↓)", "MUSIQ-NR (IQA-PyTorch) (↑)", "Final Score (0-10) (↑)"],
datatype=["html", "str", "number", "number", "number", "number"], # Added "number" for Final Score
interactive=False,
wrap=True,
row_count=(15, "paginate")
)
with gr.TabItem("↔️ Calculate FID (Set vs. Set)"):
gr.Markdown("""
Calculate FrΓ©chet Inception Distance (FID) between two sets of images.
FID measures the similarity of two image distributions. **Lower FID scores are better**.
""")
with gr.Row():
fid_set1_upload = gr.Files(label="Upload Images for Set 1", file_count="multiple", type="filepath")
fid_set2_upload = gr.Files(label="Upload Images for Set 2", file_count="multiple", type="filepath")
fid_calculate_button = gr.Button("πŸ”— Calculate FID between Set 1 and Set 2", variant="primary")
fid_result_output = gr.Textbox(label="πŸ“ˆ FID Result", interactive=False, lines=2)
evaluate_button_main.click(fn=process_images_for_individual_scores, inputs=[image_upload_input], outputs=[results_table_output, status_output_main])
fid_calculate_button.click(fn=process_fid_for_two_sets, inputs=[fid_set1_upload, fid_set2_upload], outputs=[fid_result_output])
# --- For Hugging Face Spaces ---
# Ensure 'requirements.txt' includes:
"""
gradio
torch
torchvision
Pillow
numpy
piq>=0.8.0
iqa-pytorch==0.1
timm
scikit-image
pandas
kornia
"""
if __name__ == "__main__":
if piq is None: print("\nWARNING: PIQ library is missing. pip install piq\n")
if IQA is None: print("\nERROR: IQA-PyTorch library import failed. pip install iqa-pytorch==0.1 kornia\n")
demo.launch(debug=True)