Spaces:
Sleeping
Sleeping
File size: 13,594 Bytes
8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 5157b8f 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 5157b8f 8c2a1e0 bdc8307 8c2a1e0 5157b8f 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 5157b8f 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 5157b8f 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 5157b8f bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 bdc8307 8c2a1e0 5157b8f bdc8307 5157b8f 8c2a1e0 bdc8307 8c2a1e0 bdc8307 5157b8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import pandas as pd
import torch
import torchvision.transforms as T
from PIL import Image
import numpy as np
import io
import base64
import os
import shutil
import tempfile
# PIQ imports
try:
import piq
except ImportError:
print("Warning: PIQ library not found. Some metrics (BRISQUE, FID) will be unavailable.")
piq = None
# IQA-PyTorch imports
try:
# This import needs to succeed for NIQE and MUSIQ
from iqa_pytorch import IQA
except ImportError as e:
print(f"ERROR: IQA-PyTorch library import failed: {e}. Some metrics (NIQE, MUSIQ-NR) will be unavailable. Check installation and dependencies (like kornia).")
IQA = None
except Exception as e:
print(f"ERROR: An unexpected error occurred during IQA-PyTorch import: {e}")
IQA = None
# --- Configuration ---
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_IMAGES_PER_BATCH = 100
THUMBNAIL_SIZE = (64, 64) # (width, height) for preview
# --- Metric Normalization Parameters (Approximate typical ranges) ---
# For "lower is better" metrics, score is (max_val - current_val) / (max_val - min_val)
# For "higher is better" metrics, score is (current_val - min_val) / (max_val - min_val)
# These are heuristics and can be adjusted.
METRIC_RANGES = {
"brisque": {"min": 0, "max": 120, "lower_is_better": True}, # Typical BRISQUE range
"niqe": {"min": 0, "max": 12, "lower_is_better": True}, # Typical NIQE range
"musiq_nr": {"min": 10, "max": 90, "lower_is_better": False} # Example MUSIQ range
}
# --- Metric Functions ---
def get_brisque_score(img_tensor_chw_01):
if piq is None: return "N/A (PIQ missing)"
try:
if img_tensor_chw_01.ndim == 3:
img_tensor_bchw_01 = img_tensor_chw_01.unsqueeze(0)
else:
img_tensor_bchw_01 = img_tensor_chw_01
if img_tensor_bchw_01.shape[1] == 1:
img_tensor_bchw_01 = img_tensor_bchw_01.repeat(1, 3, 1, 1)
brisque_loss = piq.brisque(img_tensor_bchw_01.to(DEVICE), data_range=1.)
return round(brisque_loss.item(), 3)
except Exception: return "Error"
def get_niqe_score(img_pil_rgb):
if IQA is None: return "N/A (IQA missing)"
try:
niqe_metric = IQA(libs='NIQE-PyTorch', device=DEVICE)
score = niqe_metric(img_pil_rgb)
return round(score.item(), 3)
except Exception: return "Error"
def get_musiq_nr_score(img_pil_rgb):
if IQA is None: return "N/A (IQA missing)"
try:
musiq_metric = IQA(libs='MUSIQ-L2N-lessons', device=DEVICE) # Example, could be other MUSIQ variants
score = musiq_metric(img_pil_rgb)
return round(score.item(), 3)
except Exception: return "Error"
def get_fid_score_piq_folders(path_to_set1_folder, path_to_set2_folder):
if piq is None: return "N/A (PIQ missing)"
try:
set1_files = [os.path.join(path_to_set1_folder, f) for f in os.listdir(path_to_set1_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
set2_files = [os.path.join(path_to_set2_folder, f) for f in os.listdir(path_to_set2_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
if not set1_files or not set2_files: return "One or both sets have no valid image files."
if len(set1_files) < 2 or len(set2_files) < 2: return f"FID needs at least 2 images per set. Found: Set1={len(set1_files)}, Set2={len(set2_files)}."
fid_metric = piq.FID()
set1_features = fid_metric.compute_feats(set1_files, device=DEVICE)
set2_features = fid_metric.compute_feats(set2_files, device=DEVICE)
if set1_features is None or set2_features is None: return "Could not extract features for one or both sets."
if set1_features.dim() == 0 or set2_features.dim() == 0 or set1_features.numel() == 0 or set2_features.numel() == 0: return "Feature extraction resulted in empty tensors."
fid_value = fid_metric(set1_features, set2_features)
return round(fid_value.item(), 3)
except Exception as e:
print(f"FID calculation error: {e}")
return f"FID Error: {str(e)[:100]}"
# --- Helper & Final Score Calculation ---
def pil_to_tensor_chw_01(img_pil_rgb):
transform = T.Compose([T.ToTensor()])
return transform(img_pil_rgb)
def create_thumbnail_base64(img_pil_rgb, size=THUMBNAIL_SIZE):
img_copy = img_pil_rgb.copy()
img_copy.thumbnail(size)
buffered = io.BytesIO()
img_copy.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
def calculate_final_score(brisque_val, niqe_val, musiq_nr_val):
normalized_scores = []
# BRISQUE
if isinstance(brisque_val, (float, int)):
cfg = METRIC_RANGES["brisque"]
val = max(cfg["min"], min(cfg["max"], brisque_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
# NIQE
if isinstance(niqe_val, (float, int)):
cfg = METRIC_RANGES["niqe"]
val = max(cfg["min"], min(cfg["max"], niqe_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
# MUSIQ-NR
if isinstance(musiq_nr_val, (float, int)):
cfg = METRIC_RANGES["musiq_nr"]
val = max(cfg["min"], min(cfg["max"], musiq_nr_val)) # Clip
norm_score = (cfg["max"] - val) / (cfg["max"] - cfg["min"]) if cfg["lower_is_better"] else (val - cfg["min"]) / (cfg["max"] - cfg["min"])
normalized_scores.append(norm_score)
if not normalized_scores:
return "N/A"
# Average of normalized scores, then scale to 0-10
final_score_0_10 = (sum(normalized_scores) / len(normalized_scores)) * 10.0
return round(final_score_0_10, 4)
# --- Main Processing Functions for Gradio ---
def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progress(track_tqdm=True)):
if not uploaded_file_list:
return pd.DataFrame(), "Please upload images first."
if len(uploaded_file_list) > MAX_IMAGES_PER_BATCH:
status_message = f"Too many images ({len(uploaded_file_list)}). Processing first {MAX_IMAGES_PER_BATCH} images."
uploaded_file_list = uploaded_file_list[:MAX_IMAGES_PER_BATCH]
else:
status_message = f"Processing {len(uploaded_file_list)} images..."
progress(0, desc=status_message)
results_data = []
for i, file_obj in enumerate(uploaded_file_list):
base_filename = "Unknown File"
try:
file_path = file_obj.name
base_filename = os.path.basename(file_path)
img_pil_rgb = Image.open(file_path).convert("RGB")
img_tensor_chw_01 = pil_to_tensor_chw_01(img_pil_rgb)
brisque_val = get_brisque_score(img_tensor_chw_01)
niqe_val = get_niqe_score(img_pil_rgb)
musiq_nr_val = get_musiq_nr_score(img_pil_rgb)
final_score = calculate_final_score(brisque_val, niqe_val, musiq_nr_val)
thumbnail_b64 = create_thumbnail_base64(img_pil_rgb)
preview_html = f'<img src="{thumbnail_b64}" alt="{base_filename}">'
results_data.append({
"Preview": preview_html,
"Filename": base_filename,
"BRISQUE (PIQ) (β)": brisque_val,
"NIQE (IQA-PyTorch) (β)": niqe_val,
"MUSIQ-NR (IQA-PyTorch) (β)": musiq_nr_val,
"Final Score (0-10) (β)": final_score,
})
except Exception as e:
results_data.append({
"Preview": "Error processing", "Filename": base_filename,
"BRISQUE (PIQ) (β)": f"Load Err: {str(e)[:30]}",
"NIQE (IQA-PyTorch) (β)": "N/A",
"MUSIQ-NR (IQA-PyTorch) (β)": "N/A",
"Final Score (0-10) (β)": "N/A",
})
progress((i + 1) / len(uploaded_file_list), desc=f"Processing {base_filename}")
df_results = pd.DataFrame(results_data)
status_message += f"\nPer-image metrics calculated for {len(results_data)} images."
return df_results, status_message
def process_fid_for_two_sets(set1_file_list, set2_file_list, progress=gr.Progress(track_tqdm=True)):
if not set1_file_list or not set2_file_list:
return "Please upload files for both Set 1 and Set 2."
set1_dir = tempfile.mkdtemp(prefix="fid_set1_")
set2_dir = tempfile.mkdtemp(prefix="fid_set2_")
fid_result_text = "Starting FID calculation..."
progress(0.1, desc="Preparing image sets for FID...")
try:
for i, file_obj in enumerate(set1_file_list):
shutil.copy(file_obj.name, os.path.join(set1_dir, os.path.basename(file_obj.name)))
progress(0.1 + 0.2 * (i / len(set1_file_list)), desc=f"Copying Set 1: {os.path.basename(file_obj.name)}")
for i, file_obj in enumerate(set2_file_list):
shutil.copy(file_obj.name, os.path.join(set2_dir, os.path.basename(file_obj.name)))
progress(0.3 + 0.2 * (i / len(set2_file_list)), desc=f"Copying Set 2: {os.path.basename(file_obj.name)}")
num_set1 = len(os.listdir(set1_dir)); num_set2 = len(os.listdir(set2_dir))
if num_set1 == 0 or num_set2 == 0: return f"FID Error: One or both sets are empty after copying. Set 1: {num_set1}, Set 2: {num_set2}."
progress(0.5, desc=f"Calculating FID between Set 1 ({num_set1} images) and Set 2 ({num_set2} images)...")
fid_score = get_fid_score_piq_folders(set1_dir, set2_dir)
progress(1, desc="FID calculation complete.")
fid_result_text = f"FID (PIQ) between Set 1 ({num_set1} images) and Set 2 ({num_set2} images): {fid_score}"
except Exception as e: fid_result_text = f"Error during FID preparation or calculation: {str(e)}"
finally:
if os.path.exists(set1_dir): shutil.rmtree(set1_dir)
if os.path.exists(set2_dir): shutil.rmtree(set2_dir)
return fid_result_text
# --- Gradio UI Definition ---
css_custom = """
table {font-size: 0.8em !important; width: 100% !important;}
th, td {padding: 4px !important; text-align: left !important;}
img {max-width: 64px !important; max-height: 64px !important; object-fit: contain;}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css_custom) as demo:
gr.Markdown(f"""
# Image Generation Model Evaluation Tool
**Objective:** Automated evaluation and comparison of image quality from different model versions.
Utilizes `PIQ` and `IQA-PyTorch` libraries. Runs on **{DEVICE}**.
(β) means lower is better, (β) means higher is better.
Final Score is a heuristic combination of available metrics (0-10, higher is better).
""")
with gr.Tabs():
with gr.TabItem("Per-Image Quality Evaluation"):
gr.Markdown(f"Upload a batch of images (up to **{MAX_IMAGES_PER_BATCH}**) to get individual quality scores.")
image_upload_input = gr.Files(label=f"Upload Images (max {MAX_IMAGES_PER_BATCH}, .png, .jpg, .jpeg, .bmp, .webp)", file_count="multiple", type="filepath")
evaluate_button_main = gr.Button("πΌοΈ Evaluate Uploaded Images", variant="primary")
gr.Markdown("---")
status_output_main = gr.Textbox(label="π Evaluation Status", interactive=False, lines=2)
gr.Markdown("### πΌοΈ Per-Image Evaluation Results")
gr.Markdown("Click column headers to sort. Previews are thumbnails.")
results_table_output = gr.DataFrame(
headers=["Preview", "Filename", "BRISQUE (PIQ) (β)", "NIQE (IQA-PyTorch) (β)", "MUSIQ-NR (IQA-PyTorch) (β)", "Final Score (0-10) (β)"],
datatype=["html", "str", "number", "number", "number", "number"], # Added "number" for Final Score
interactive=False,
wrap=True,
row_count=(15, "paginate")
)
with gr.TabItem("βοΈ Calculate FID (Set vs. Set)"):
gr.Markdown("""
Calculate FrΓ©chet Inception Distance (FID) between two sets of images.
FID measures the similarity of two image distributions. **Lower FID scores are better**.
""")
with gr.Row():
fid_set1_upload = gr.Files(label="Upload Images for Set 1", file_count="multiple", type="filepath")
fid_set2_upload = gr.Files(label="Upload Images for Set 2", file_count="multiple", type="filepath")
fid_calculate_button = gr.Button("π Calculate FID between Set 1 and Set 2", variant="primary")
fid_result_output = gr.Textbox(label="π FID Result", interactive=False, lines=2)
evaluate_button_main.click(fn=process_images_for_individual_scores, inputs=[image_upload_input], outputs=[results_table_output, status_output_main])
fid_calculate_button.click(fn=process_fid_for_two_sets, inputs=[fid_set1_upload, fid_set2_upload], outputs=[fid_result_output])
# --- For Hugging Face Spaces ---
# Ensure 'requirements.txt' includes:
"""
gradio
torch
torchvision
Pillow
numpy
piq>=0.8.0
iqa-pytorch==0.1
timm
scikit-image
pandas
kornia
"""
if __name__ == "__main__":
if piq is None: print("\nWARNING: PIQ library is missing. pip install piq\n")
if IQA is None: print("\nERROR: IQA-PyTorch library import failed. pip install iqa-pytorch==0.1 kornia\n")
demo.launch(debug=True) |