Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ try:
|
|
25 |
# "BRISQUE-PyTorch", "NIQE-PyTorch"
|
26 |
# "NIMA-VGG16-estimate", "NIMA-MobileNet-estimate" (Aesthetic)
|
27 |
except ImportError:
|
28 |
-
print("
|
29 |
IQA = None
|
30 |
|
31 |
# --- Configuration ---
|
@@ -39,20 +39,17 @@ def get_brisque_score(img_tensor_chw_01):
|
|
39 |
"""Calculates BRISQUE score using PIQ. Expects a (C, H, W) tensor, range [0, 1]."""
|
40 |
if piq is None: return "N/A (PIQ missing)"
|
41 |
try:
|
42 |
-
# Ensure tensor is (B, C, H, W) for piq.brisque
|
43 |
if img_tensor_chw_01.ndim == 3:
|
44 |
img_tensor_bchw_01 = img_tensor_chw_01.unsqueeze(0)
|
45 |
-
else:
|
46 |
img_tensor_bchw_01 = img_tensor_chw_01
|
47 |
|
48 |
-
# Ensure 3 channels if it's grayscale by repeating
|
49 |
if img_tensor_bchw_01.shape[1] == 1:
|
50 |
img_tensor_bchw_01 = img_tensor_bchw_01.repeat(1, 3, 1, 1)
|
51 |
|
52 |
brisque_loss = piq.brisque(img_tensor_bchw_01.to(DEVICE), data_range=1.)
|
53 |
return round(brisque_loss.item(), 3)
|
54 |
except Exception as e:
|
55 |
-
# print(f"BRISQUE Error: {e} for tensor shape {img_tensor_chw_01.shape}")
|
56 |
return f"Error"
|
57 |
|
58 |
|
@@ -64,20 +61,16 @@ def get_niqe_score(img_pil_rgb):
|
|
64 |
score = niqe_metric(img_pil_rgb)
|
65 |
return round(score.item(), 3)
|
66 |
except Exception as e:
|
67 |
-
# print(f"NIQE Error: {e}")
|
68 |
return f"Error"
|
69 |
|
70 |
def get_musiq_nr_score(img_pil_rgb):
|
71 |
"""Calculates No-Reference MUSIQ score using IQA-PyTorch. Expects a PIL RGB image."""
|
72 |
if IQA is None: return "N/A (IQA missing)"
|
73 |
try:
|
74 |
-
# Using MUSIQ-L2N-lessons as an example NR model from IQA-PyTorch
|
75 |
-
# Other options: "MUSIQ-Koniq-NSR", "MUSIQ-SpAq-NSR"
|
76 |
musiq_metric = IQA(libs='MUSIQ-L2N-lessons', device=DEVICE)
|
77 |
score = musiq_metric(img_pil_rgb)
|
78 |
return round(score.item(), 3)
|
79 |
except Exception as e:
|
80 |
-
# print(f"MUSIQ-NR Error: {e}")
|
81 |
return f"Error"
|
82 |
|
83 |
|
@@ -85,7 +78,6 @@ def get_fid_score_piq_folders(path_to_set1_folder, path_to_set2_folder):
|
|
85 |
"""Calculates FID between two folders of images using PIQ."""
|
86 |
if piq is None: return "N/A (PIQ missing)"
|
87 |
try:
|
88 |
-
# List image files in folders
|
89 |
set1_files = [os.path.join(path_to_set1_folder, f) for f in os.listdir(path_to_set1_folder)
|
90 |
if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
|
91 |
set2_files = [os.path.join(path_to_set2_folder, f) for f in os.listdir(path_to_set2_folder)
|
@@ -93,21 +85,19 @@ def get_fid_score_piq_folders(path_to_set1_folder, path_to_set2_folder):
|
|
93 |
|
94 |
if not set1_files or not set2_files:
|
95 |
return "One or both sets have no valid image files."
|
96 |
-
if len(set1_files) < 2 or len(set2_files) < 2:
|
97 |
return f"FID needs at least 2 images per set. Found: Set1={len(set1_files)}, Set2={len(set2_files)}."
|
98 |
|
99 |
fid_metric = piq.FID()
|
100 |
-
# compute_feats expects a list of image paths
|
101 |
set1_features = fid_metric.compute_feats(set1_files, device=DEVICE)
|
102 |
set2_features = fid_metric.compute_feats(set2_files, device=DEVICE)
|
103 |
|
104 |
if set1_features is None or set2_features is None:
|
105 |
return "Could not extract features for one or both sets (check image validity and count)."
|
106 |
-
if set1_features.dim() == 0 or set2_features.dim() == 0 or set1_features.numel() == 0 or set2_features.numel() == 0:
|
107 |
return "Feature extraction resulted in empty tensors."
|
108 |
|
109 |
-
|
110 |
-
fid_value = fid_metric(set1_features, set2_features) # Pass tensors directly
|
111 |
return round(fid_value.item(), 3)
|
112 |
except Exception as e:
|
113 |
print(f"FID calculation error: {e}")
|
@@ -115,12 +105,10 @@ def get_fid_score_piq_folders(path_to_set1_folder, path_to_set2_folder):
|
|
115 |
|
116 |
# --- Helper Functions ---
|
117 |
def pil_to_tensor_chw_01(img_pil_rgb):
|
118 |
-
|
119 |
-
transform = T.Compose([T.ToTensor()]) # Converts PIL [0,255] to Tensor [0,1] C,H,W
|
120 |
return transform(img_pil_rgb)
|
121 |
|
122 |
def create_thumbnail_base64(img_pil_rgb, size=THUMBNAIL_SIZE):
|
123 |
-
"""Creates a base64 encoded PNG thumbnail string from a PIL image."""
|
124 |
img_copy = img_pil_rgb.copy()
|
125 |
img_copy.thumbnail(size)
|
126 |
buffered = io.BytesIO()
|
@@ -131,11 +119,9 @@ def create_thumbnail_base64(img_pil_rgb, size=THUMBNAIL_SIZE):
|
|
131 |
# --- Main Processing Functions for Gradio ---
|
132 |
|
133 |
def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progress(track_tqdm=True)):
|
134 |
-
"""Processes uploaded images for individual quality scores and displays them."""
|
135 |
if not uploaded_file_list:
|
136 |
-
return pd.DataFrame(), "Please upload images first."
|
137 |
|
138 |
-
# Limit number of images
|
139 |
if len(uploaded_file_list) > MAX_IMAGES_PER_BATCH:
|
140 |
status_message = f"Too many images ({len(uploaded_file_list)}). Processing first {MAX_IMAGES_PER_BATCH} images."
|
141 |
uploaded_file_list = uploaded_file_list[:MAX_IMAGES_PER_BATCH]
|
@@ -143,28 +129,18 @@ def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progres
|
|
143 |
status_message = f"Processing {len(uploaded_file_list)} images..."
|
144 |
|
145 |
progress(0, desc=status_message)
|
146 |
-
|
147 |
results_data = []
|
148 |
-
# Temporary directory for this batch if needed by some metric that takes a folder path
|
149 |
-
# batch_temp_dir = tempfile.mkdtemp(prefix="eval_batch_")
|
150 |
|
151 |
for i, file_obj in enumerate(uploaded_file_list):
|
152 |
try:
|
153 |
-
# file_obj for gr.Files is a tempfile._TemporaryFileWrapper object
|
154 |
file_path = file_obj.name
|
155 |
base_filename = os.path.basename(file_path)
|
156 |
-
|
157 |
img_pil_rgb = Image.open(file_path).convert("RGB")
|
158 |
|
159 |
-
# 1. For PIQ BRISQUE (needs tensor)
|
160 |
img_tensor_chw_01 = pil_to_tensor_chw_01(img_pil_rgb)
|
161 |
brisque_val = get_brisque_score(img_tensor_chw_01)
|
162 |
-
|
163 |
-
# 2. For IQA-PyTorch NIQE & MUSIQ (needs PIL image)
|
164 |
niqe_val = get_niqe_score(img_pil_rgb)
|
165 |
musiq_nr_val = get_musiq_nr_score(img_pil_rgb)
|
166 |
-
|
167 |
-
# 3. Thumbnail for display
|
168 |
thumbnail_b64 = create_thumbnail_base64(img_pil_rgb)
|
169 |
preview_html = f'<img src="{thumbnail_b64}" alt="{base_filename}">'
|
170 |
|
@@ -188,33 +164,19 @@ def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progres
|
|
188 |
|
189 |
df_results = pd.DataFrame(results_data)
|
190 |
status_message += f"\nPer-image metrics calculated for {len(results_data)} images."
|
191 |
-
|
192 |
-
# Batch metrics info (IS not implemented, FID separate)
|
193 |
-
is_text = "IS (PIQ): Not implemented in this version."
|
194 |
-
fid_text_batch_info = "FID (PIQ): Use the 'Calculate FID (Set vs Set)' tab for FID scores."
|
195 |
-
|
196 |
-
# Cleanup temp dir if created
|
197 |
-
# if os.path.exists(batch_temp_dir): shutil.rmtree(batch_temp_dir)
|
198 |
-
|
199 |
-
return df_results, status_message, is_text, fid_text_batch_info
|
200 |
|
201 |
|
202 |
def process_fid_for_two_sets(set1_file_list, set2_file_list, progress=gr.Progress(track_tqdm=True)):
|
203 |
-
"""Handles FID calculation between two sets of uploaded images."""
|
204 |
if not set1_file_list or not set2_file_list:
|
205 |
return "Please upload files for both Set 1 and Set 2."
|
206 |
|
207 |
-
# Create temporary directories for Set 1 and Set 2
|
208 |
-
# Suffix helps identify user folders if many users hit it, though Gradio handles sessions.
|
209 |
-
# Prefix is better for mkdtemp.
|
210 |
set1_dir = tempfile.mkdtemp(prefix="fid_set1_")
|
211 |
set2_dir = tempfile.mkdtemp(prefix="fid_set2_")
|
212 |
-
|
213 |
fid_result_text = "Starting FID calculation..."
|
214 |
progress(0.1, desc="Preparing image sets for FID...")
|
215 |
|
216 |
try:
|
217 |
-
# Copy uploaded files to these temporary directories
|
218 |
for i, file_obj in enumerate(set1_file_list):
|
219 |
shutil.copy(file_obj.name, os.path.join(set1_dir, os.path.basename(file_obj.name)))
|
220 |
progress(0.1 + 0.2 * (i / len(set1_file_list)), desc=f"Copying Set 1: {os.path.basename(file_obj.name)}")
|
@@ -237,10 +199,8 @@ def process_fid_for_two_sets(set1_file_list, set2_file_list, progress=gr.Progres
|
|
237 |
except Exception as e:
|
238 |
fid_result_text = f"Error during FID preparation or calculation: {str(e)}"
|
239 |
finally:
|
240 |
-
# Cleanup temporary directories
|
241 |
if os.path.exists(set1_dir): shutil.rmtree(set1_dir)
|
242 |
if os.path.exists(set2_dir): shutil.rmtree(set2_dir)
|
243 |
-
|
244 |
return fid_result_text
|
245 |
|
246 |
# --- Gradio UI Definition ---
|
@@ -264,7 +224,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css_custom) as demo:
|
|
264 |
image_upload_input = gr.Files(
|
265 |
label=f"Upload Images (max {MAX_IMAGES_PER_BATCH}, .png, .jpg, .jpeg, .bmp, .webp)",
|
266 |
file_count="multiple",
|
267 |
-
type="filepath"
|
268 |
)
|
269 |
|
270 |
evaluate_button_main = gr.Button("πΌοΈ Evaluate Uploaded Images", variant="primary")
|
@@ -274,14 +234,12 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css_custom) as demo:
|
|
274 |
|
275 |
gr.Markdown("### πΌοΈ Per-Image Evaluation Results")
|
276 |
gr.Markdown("Click column headers to sort. Previews are thumbnails.")
|
277 |
-
# MODIFIED LINE BELOW:
|
278 |
results_table_output = gr.DataFrame(
|
279 |
headers=["Preview", "Filename", "BRISQUE (PIQ) (β)", "NIQE (IQA-PyTorch) (β)", "MUSIQ-NR (IQA-PyTorch) (β)"],
|
280 |
datatype=["html", "str", "number", "number", "number"],
|
281 |
-
interactive=False,
|
282 |
-
wrap=True,
|
283 |
-
|
284 |
-
# height=450 # Optional: Set a fixed height in pixels if you want ~15 rows visible before scrolling within the component
|
285 |
)
|
286 |
|
287 |
with gr.TabItem("βοΈ Calculate FID (Set vs. Set)"):
|
@@ -297,11 +255,10 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css_custom) as demo:
|
|
297 |
fid_calculate_button = gr.Button("π Calculate FID between Set 1 and Set 2", variant="primary")
|
298 |
fid_result_output = gr.Textbox(label="π FID Result", interactive=False, lines=2)
|
299 |
|
300 |
-
# Wire components
|
301 |
evaluate_button_main.click(
|
302 |
fn=process_images_for_individual_scores,
|
303 |
inputs=[image_upload_input],
|
304 |
-
outputs=[results_table_output, status_output_main]
|
305 |
)
|
306 |
|
307 |
fid_calculate_button.click(
|
@@ -318,16 +275,19 @@ torch
|
|
318 |
torchvision
|
319 |
Pillow
|
320 |
numpy
|
321 |
-
piq>=0.8.0
|
322 |
-
iqa-pytorch
|
323 |
-
timm
|
324 |
-
scikit-image
|
325 |
pandas
|
326 |
"""
|
327 |
|
328 |
if __name__ == "__main__":
|
329 |
-
if piq is None
|
330 |
-
print("\n\nWARNING:
|
331 |
-
print("Please install
|
|
|
|
|
|
|
332 |
|
333 |
-
demo.launch(debug=True)
|
|
|
25 |
# "BRISQUE-PyTorch", "NIQE-PyTorch"
|
26 |
# "NIMA-VGG16-estimate", "NIMA-MobileNet-estimate" (Aesthetic)
|
27 |
except ImportError:
|
28 |
+
print("ERROR: IQA-PyTorch library import failed. Some metrics (NIQE, MUSIQ-NR) will be unavailable. Check installation.")
|
29 |
IQA = None
|
30 |
|
31 |
# --- Configuration ---
|
|
|
39 |
"""Calculates BRISQUE score using PIQ. Expects a (C, H, W) tensor, range [0, 1]."""
|
40 |
if piq is None: return "N/A (PIQ missing)"
|
41 |
try:
|
|
|
42 |
if img_tensor_chw_01.ndim == 3:
|
43 |
img_tensor_bchw_01 = img_tensor_chw_01.unsqueeze(0)
|
44 |
+
else:
|
45 |
img_tensor_bchw_01 = img_tensor_chw_01
|
46 |
|
|
|
47 |
if img_tensor_bchw_01.shape[1] == 1:
|
48 |
img_tensor_bchw_01 = img_tensor_bchw_01.repeat(1, 3, 1, 1)
|
49 |
|
50 |
brisque_loss = piq.brisque(img_tensor_bchw_01.to(DEVICE), data_range=1.)
|
51 |
return round(brisque_loss.item(), 3)
|
52 |
except Exception as e:
|
|
|
53 |
return f"Error"
|
54 |
|
55 |
|
|
|
61 |
score = niqe_metric(img_pil_rgb)
|
62 |
return round(score.item(), 3)
|
63 |
except Exception as e:
|
|
|
64 |
return f"Error"
|
65 |
|
66 |
def get_musiq_nr_score(img_pil_rgb):
|
67 |
"""Calculates No-Reference MUSIQ score using IQA-PyTorch. Expects a PIL RGB image."""
|
68 |
if IQA is None: return "N/A (IQA missing)"
|
69 |
try:
|
|
|
|
|
70 |
musiq_metric = IQA(libs='MUSIQ-L2N-lessons', device=DEVICE)
|
71 |
score = musiq_metric(img_pil_rgb)
|
72 |
return round(score.item(), 3)
|
73 |
except Exception as e:
|
|
|
74 |
return f"Error"
|
75 |
|
76 |
|
|
|
78 |
"""Calculates FID between two folders of images using PIQ."""
|
79 |
if piq is None: return "N/A (PIQ missing)"
|
80 |
try:
|
|
|
81 |
set1_files = [os.path.join(path_to_set1_folder, f) for f in os.listdir(path_to_set1_folder)
|
82 |
if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.webp'))]
|
83 |
set2_files = [os.path.join(path_to_set2_folder, f) for f in os.listdir(path_to_set2_folder)
|
|
|
85 |
|
86 |
if not set1_files or not set2_files:
|
87 |
return "One or both sets have no valid image files."
|
88 |
+
if len(set1_files) < 2 or len(set2_files) < 2:
|
89 |
return f"FID needs at least 2 images per set. Found: Set1={len(set1_files)}, Set2={len(set2_files)}."
|
90 |
|
91 |
fid_metric = piq.FID()
|
|
|
92 |
set1_features = fid_metric.compute_feats(set1_files, device=DEVICE)
|
93 |
set2_features = fid_metric.compute_feats(set2_files, device=DEVICE)
|
94 |
|
95 |
if set1_features is None or set2_features is None:
|
96 |
return "Could not extract features for one or both sets (check image validity and count)."
|
97 |
+
if set1_features.dim() == 0 or set2_features.dim() == 0 or set1_features.numel() == 0 or set2_features.numel() == 0:
|
98 |
return "Feature extraction resulted in empty tensors."
|
99 |
|
100 |
+
fid_value = fid_metric(set1_features, set2_features)
|
|
|
101 |
return round(fid_value.item(), 3)
|
102 |
except Exception as e:
|
103 |
print(f"FID calculation error: {e}")
|
|
|
105 |
|
106 |
# --- Helper Functions ---
|
107 |
def pil_to_tensor_chw_01(img_pil_rgb):
|
108 |
+
transform = T.Compose([T.ToTensor()])
|
|
|
109 |
return transform(img_pil_rgb)
|
110 |
|
111 |
def create_thumbnail_base64(img_pil_rgb, size=THUMBNAIL_SIZE):
|
|
|
112 |
img_copy = img_pil_rgb.copy()
|
113 |
img_copy.thumbnail(size)
|
114 |
buffered = io.BytesIO()
|
|
|
119 |
# --- Main Processing Functions for Gradio ---
|
120 |
|
121 |
def process_images_for_individual_scores(uploaded_file_list, progress=gr.Progress(track_tqdm=True)):
|
|
|
122 |
if not uploaded_file_list:
|
123 |
+
return pd.DataFrame(), "Please upload images first."
|
124 |
|
|
|
125 |
if len(uploaded_file_list) > MAX_IMAGES_PER_BATCH:
|
126 |
status_message = f"Too many images ({len(uploaded_file_list)}). Processing first {MAX_IMAGES_PER_BATCH} images."
|
127 |
uploaded_file_list = uploaded_file_list[:MAX_IMAGES_PER_BATCH]
|
|
|
129 |
status_message = f"Processing {len(uploaded_file_list)} images..."
|
130 |
|
131 |
progress(0, desc=status_message)
|
|
|
132 |
results_data = []
|
|
|
|
|
133 |
|
134 |
for i, file_obj in enumerate(uploaded_file_list):
|
135 |
try:
|
|
|
136 |
file_path = file_obj.name
|
137 |
base_filename = os.path.basename(file_path)
|
|
|
138 |
img_pil_rgb = Image.open(file_path).convert("RGB")
|
139 |
|
|
|
140 |
img_tensor_chw_01 = pil_to_tensor_chw_01(img_pil_rgb)
|
141 |
brisque_val = get_brisque_score(img_tensor_chw_01)
|
|
|
|
|
142 |
niqe_val = get_niqe_score(img_pil_rgb)
|
143 |
musiq_nr_val = get_musiq_nr_score(img_pil_rgb)
|
|
|
|
|
144 |
thumbnail_b64 = create_thumbnail_base64(img_pil_rgb)
|
145 |
preview_html = f'<img src="{thumbnail_b64}" alt="{base_filename}">'
|
146 |
|
|
|
164 |
|
165 |
df_results = pd.DataFrame(results_data)
|
166 |
status_message += f"\nPer-image metrics calculated for {len(results_data)} images."
|
167 |
+
return df_results, status_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
|
170 |
def process_fid_for_two_sets(set1_file_list, set2_file_list, progress=gr.Progress(track_tqdm=True)):
|
|
|
171 |
if not set1_file_list or not set2_file_list:
|
172 |
return "Please upload files for both Set 1 and Set 2."
|
173 |
|
|
|
|
|
|
|
174 |
set1_dir = tempfile.mkdtemp(prefix="fid_set1_")
|
175 |
set2_dir = tempfile.mkdtemp(prefix="fid_set2_")
|
|
|
176 |
fid_result_text = "Starting FID calculation..."
|
177 |
progress(0.1, desc="Preparing image sets for FID...")
|
178 |
|
179 |
try:
|
|
|
180 |
for i, file_obj in enumerate(set1_file_list):
|
181 |
shutil.copy(file_obj.name, os.path.join(set1_dir, os.path.basename(file_obj.name)))
|
182 |
progress(0.1 + 0.2 * (i / len(set1_file_list)), desc=f"Copying Set 1: {os.path.basename(file_obj.name)}")
|
|
|
199 |
except Exception as e:
|
200 |
fid_result_text = f"Error during FID preparation or calculation: {str(e)}"
|
201 |
finally:
|
|
|
202 |
if os.path.exists(set1_dir): shutil.rmtree(set1_dir)
|
203 |
if os.path.exists(set2_dir): shutil.rmtree(set2_dir)
|
|
|
204 |
return fid_result_text
|
205 |
|
206 |
# --- Gradio UI Definition ---
|
|
|
224 |
image_upload_input = gr.Files(
|
225 |
label=f"Upload Images (max {MAX_IMAGES_PER_BATCH}, .png, .jpg, .jpeg, .bmp, .webp)",
|
226 |
file_count="multiple",
|
227 |
+
type="filepath"
|
228 |
)
|
229 |
|
230 |
evaluate_button_main = gr.Button("πΌοΈ Evaluate Uploaded Images", variant="primary")
|
|
|
234 |
|
235 |
gr.Markdown("### πΌοΈ Per-Image Evaluation Results")
|
236 |
gr.Markdown("Click column headers to sort. Previews are thumbnails.")
|
|
|
237 |
results_table_output = gr.DataFrame(
|
238 |
headers=["Preview", "Filename", "BRISQUE (PIQ) (β)", "NIQE (IQA-PyTorch) (β)", "MUSIQ-NR (IQA-PyTorch) (β)"],
|
239 |
datatype=["html", "str", "number", "number", "number"],
|
240 |
+
interactive=False,
|
241 |
+
wrap=True,
|
242 |
+
row_count=(15, "paginate") # MODIFIED: Replaced max_rows and overflow_row_behaviour
|
|
|
243 |
)
|
244 |
|
245 |
with gr.TabItem("βοΈ Calculate FID (Set vs. Set)"):
|
|
|
255 |
fid_calculate_button = gr.Button("π Calculate FID between Set 1 and Set 2", variant="primary")
|
256 |
fid_result_output = gr.Textbox(label="π FID Result", interactive=False, lines=2)
|
257 |
|
|
|
258 |
evaluate_button_main.click(
|
259 |
fn=process_images_for_individual_scores,
|
260 |
inputs=[image_upload_input],
|
261 |
+
outputs=[results_table_output, status_output_main]
|
262 |
)
|
263 |
|
264 |
fid_calculate_button.click(
|
|
|
275 |
torchvision
|
276 |
Pillow
|
277 |
numpy
|
278 |
+
piq>=0.8.0
|
279 |
+
iqa-pytorch==0.2.1 # PINNED VERSION
|
280 |
+
timm
|
281 |
+
scikit-image
|
282 |
pandas
|
283 |
"""
|
284 |
|
285 |
if __name__ == "__main__":
|
286 |
+
if piq is None:
|
287 |
+
print("\n\nWARNING: PIQ library is missing.")
|
288 |
+
print("Please install it: pip install piq\n\n")
|
289 |
+
if IQA is None:
|
290 |
+
print("\n\nERROR: IQA-PyTorch library import failed or it's missing.")
|
291 |
+
print("Please ensure it's installed correctly (e.g., pip install iqa-pytorch==0.2.1) and check for import errors during startup.\n\n")
|
292 |
|
293 |
+
demo.launch(debug=True)
|